题目传送门:传送门p1009
题目描述
用高精度计算出 S=1!+2!+3!+⋯+n!S=1!+2!+3!+⋯+n!(n≤50n≤50)。
其中 ! 表示阶乘,定义为 n!=n×(n−1)×(n−2)×⋯×1n!=n×(n−1)×(n−2)×⋯×1。例如,5!=5×4×3×2×1=1205!=5×4×3×2×1=120。
输入格式
一个正整数 nn。
输出格式
一个正整数 SS,表示计算结果。
输入输出样例
输入 #1
3
输出 #1
9
说明/提示
【数据范围】
对于 100%100% 的数据,1≤n≤501≤n≤50。
【其他说明】
注,《深入浅出基础篇》中使用本题作为例题,但是其数据范围只有 n≤20n≤20,使用书中的代码无法通过本题。
如果希望通过本题,请继续学习第八章高精度的知识。
NOIP1998 普及组 第二题
思路就是高精乘+高精加,就是把高精乘的模板套上去接着套高精加的模板,b=c=i的阶乘。
话不多说,直接上代码:
#include<iostream>
#include<cstring>
using namespace std;
int n,a[90],b[90],c[90],f[90],d=0,len_a,len_b=1,len_c=1,len_ans,m=1;
string s;
int main(){
cin>>n;
b[0]=1; //初始化
for(int i=1;i<=n;i++){ //计算i的阶乘,已经算好了i-1的阶乘
len_a=0; //i的长度
int p=i;
while(p>0){ //把i存进a数组
a[len_a++]=p%10;
p/=10;
}
for(int j=0;j<len_a;j++) //计算a*b(i*(i-1)的阶乘),即i的阶乘,看不懂的网上查,我也不知道为什么
for(int k=0;k<=len_b;k++)
c[j+k]+=a[j]*b[k];
for(int j=0;j<len_c;j++) //需要进位的就进位
if(c[j]>9) c[j+1]+=c[j]/10,c[j]%=10;
if(c[len_c]) len_c++; //看最高位要不要进位
len_ans=len_b,len_b=len_c,m=max(m,len_c); //把len_b赋值给len_ans,修改len_b的值,m为i阶乘的长度,看有没有进位
for(int k=len_c-1;k>=0;k--) b[k]=c[k]; //把c存进b数组,即存进i的阶乘,下次循环b为i-1的阶乘
len_c=len_a+len_ans;
memset(c,0,sizeof(c)); //清零c数组,准备计算下个阶乘
for(int j=0;j<m;

最低0.47元/天 解锁文章
765

被折叠的 条评论
为什么被折叠?



