洛谷P1014

题目传送门:传送门p1014

题目描述

现代数学的著名证明之一是 Georg Cantor 证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

我们以 Z 字形给上表的每一项编号。第一项是 1/11/1,然后是 1/21/2,2/12/1,3/13/1,2/22/2,…

输入格式

整数NN(1≤N≤1071≤N≤107)。

输出格式

表中的第 NN 项。

输入输出样例

输入 #1

7

输出 #1

1/4

####模拟题

建议在Excel上打出Cantor表,再找规律(还有一个好处是可以用来测试)

如表:

1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8

3/1 3/2 3/3 3/4 3/5 3/6 3/7

4/1 4/2 4/3 4/4 4/5 4/6

5/1 5/2 5/3 5/4 5/5

6/1 6/2 6/3 6/4

7/1 7/2 7/3

8/1 8/2

9/1

(普及)在单元格中输入分数前先输入一个单引号,避免被判断为日期

#include<cstdio>
    int main() {
        int n, i=0, j=0;//前i条斜线一共j个数
        scanf("%d", &n);
        while(n>j) {//找到最小的i使得j>=n
            i++;
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏梓乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值