题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度,计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
一行,若干个整数,中间由空格隔开。
输出格式
两行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出样例
输入 #1
389 207 155 300 299 170 158 65
输出 #1
6 2
说明/提示
对于前 50%50% 数据(NOIP 原题数据),满足导弹的个数不超过 104104 个。该部分数据总分共 100100 分。可使用O(n2)O(n2) 做法通过。
对于后 50%50% 的数据,满足导弹的个数不超过 105105 个。该部分数据总分也为 100100 分。请使用 O(nlogn)O(nlogn) 做法通过。
对于全部数据,满足导弹的高度为正整数,且不超过 5×1045×104。
此外本题开启 spj,每点两问,按问给分。
NOIP1999 提高组 第一题
upd 2022.8.24upd 2022.8.24:新增加一组 Hack 数据。
第一问
将拦截的导弹的高度提出来成为原高度序列的一个子序列,根据题意这个子序列中的元素是单调不增的(即后一项总是不大于前一项),我们称为单调不升子序列。本问所求能拦截到的最多的导弹,即求最长的单调不升子序列。
考虑记 dpidpi 表示「对于前 ii 个数,在选择第 ii 个数的情况下,得到的单调不升子序列的长度最长是多少」。于是可以分两种情况:
- 第 ii 个数是子序列的第一项。则 dpi←1dpi←1。
- 第 ii 个数不是子序列的第一项。选择的第 ii 个数之前选择了第 jj 个数。根据题意,第 jj 个数的值 h(j)h(j) 应当小于第 ii 个数的值 h(i)h(i)。枚举这样的 jj,可以得到状态转移方程:
dpi=maxj<i,h(j)≥h(i){dpj+1}dpi=j<i,h(j)≥h(i)max{dpj+1}
综合这两种情况,得到最终的状态转移方程:
dpi=max{1,maxj<i,h(j)≥h(i){dpj+1}}dpi=max{1,j<i,h(j)≥h(i)max{dpj+1}}

值得注意的是,第 nn 个数不一定是最长单调不升子序列的最后一项。为了求出答案,我们需要枚举最后一项是哪个:
ans=max1≤i≤n{dpi}ans=1≤i≤nmax{dpi}
直接枚举进行状态转移,时间复杂

最低0.47元/天 解锁文章
459

被折叠的 条评论
为什么被折叠?



