题目传送门:传送门p1021
题目背景
除直接打表外,本题不保证存在正确且时间复杂度可以通过全部数据做法。由于测试数据过水,部分错误做法可以通过此题,通过不代表做法正确。本题不接受 hack 数据。
题目描述
给定一个信封,最多只允许粘贴 NN 张邮票,计算在给定 KK(N+K≤15N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值 MAXMAX,使在 11 至 MAXMAX 之间的每一个邮资值都能得到。
例如,N=3N=3,K=2K=2,如果面值分别为 11 分、44 分,则在 1∼61∼6 分之间的每一个邮资值都能得到(当然还有 88 分、99 分和 1212 分);如果面值分别为 11 分、33 分,则在 1∼71∼7 分之间的每一个邮资值都能得到。可以验证当 N=3N=3,K=2K=2 时,77 分就是可以得到的连续的邮资最大值,所以 MAX=7MAX=7,面值分别为 11 分、33 分。
输入格式
22 个整数,代表 NN,KK。
输出格式
输出共 22 行。
第一行输出若干个数字,表示选择的面值,从小到大排序。
第二行,输出 MAX=S,SS 表示最大的面值。
输入输出样例
输入 #1
3 2
输出 #1
1 3 MAX=7
//这题解是本蒟蒻看了朱羿恺凭栏等大佬的才写出来的 主要思路差不多主要是细节的解释给我们这种蒟蒻看的
//dp f[i]为拼i所需的最少数的个数 状态转移方程:f[

最低0.47元/天 解锁文章
337

被折叠的 条评论
为什么被折叠?



