洛谷P1721 跳蚤国王每次使用地下连通系统时,可以指定任意多的城市,将这些城市的水箱用地下连通系统连接起来足够长的时间之后,再将地下连通系统关闭。我们可以证明,在各个子任务的参考算法中都能保证,在任何时候始终保留 65p 位小数时,对任何输入得到的输出,与参考答案的绝对误差都小于 10−p。输入的第一行包含三个正整数 n,k,p 分别表示跳蚤国中城市的数量,跳蚤国王能使用地下连通系统的最多次数,以及你输出的答案要求的精度。跳蚤国有 n 个城市,伟大的跳蚤国王居住在跳蚤国首都中,即 1 号城市中。
我的创作纪念日 提示:你过去写得最好的一段代码是什么?希望自己能创作出更多优质的作品,获得更多人的关注。提示:当前创作和你的工作、学习是什么样的关系。提示:可以和大家分享最初成为创作者的初心。提示:在创作的过程中都有哪些收获。创作似乎成为了我生活中的一部分。最初只想发表一下自己的意见。收关注许多粉丝与挂住。
洛谷P1034 当 k=2 时,可用如图二的两个矩形 s1,s2覆盖,s1,s2 面积和为 4。将数据划分为k部分,表示k个矩形,用数组a来存储两个相邻矩形的中间点(中间点属于 前一个矩形)a[0]=0,a[k]=n。例如:当 n=4 时,4 个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),p4(0,7),见图一。拿到题面读懂题意后,如此之小的数据范围就告诉我们,这道题不是状压就是暴搜,你说状压吧又没看出来有什么好转移的东西,那就是暴搜跑不脱了。共一行一个整数,为满足条件的最小的矩形面积之和。
洛谷P1033 因为球只要xx轴和车有重合且在那一瞬间的高度h0h0满足k>=h0>=0k>=h0>=0小车即可接住这个球~~(居然不会被车头撞飞)~~,所以小车可以接住小球的时间t0t0满足。然后我们就算这个时间段内小车穿过了多少个小球的xx轴就行了,但这似乎有些难度,我们可以把它转换成求哪个编号的球小车最早可以接住,哪个编号的球小车最晚可以接住。最早接住的球的编号ibib为int(s1−tmin∗v+l),记住这里要加上l,因为最早的球可以被车尾接住。对于任意一个小球,下落的时间是一样的,从公式。
洛谷P1031 B. 从左到右,根据当前的前i堆的和sum(i),与目标的前i堆的和sumstd(i),进行比较,如果多了,则向后方移动一次纸牌(更新a[i], sum[i], a[i+1]);C. 从右向左,根据每堆的纸牌数a[i],与每堆目标纸牌数ave比较,如果多了,则向前移动纸牌(更新a[i], sum[i-1], a[i-1])所以这题用贪心的思路做后,可以存在负数,可以贷款,这不影响这题的正确性。一个非常不严谨的证明是, nn点,至多 n−1 条边的有向图是一棵树,不可能有环。从最优方案的存在性上下手。
洛谷P1030 R]传入的中序是E,后序是E - 输出E;[R]传入的中序是FCG,后序是FGC - 输出C,F是左子树,同样操作,G是右子树,同样操作;原因是在元素x被插入以前,x的父节点已经插入在树中(后序遍历的颠倒后的顺序),因此x一定会插入到原来的树中的位置上。首先要知道的是,有前序(后序)和中序可以求后序(前序),但是只有前序和后序是不能求得中序的,证明从略。[L]传入的中序是DEB,后序是EDB - 输出B,DE是左子树,同样操作;[L]传入的中序是DE,后序是ED - 输出D,E是右子树,同样操作;