faster rcnn的测试

当训练结束后,faster rcnn的模型保存在在py-faster-rcnn/output目录下,这时就可以用已有的模型对新的数据进行测试。


下面简要说一下测试流程。


测试的主要代码是./tools/test_net.py,并且使用到了fast_rcnn中test.py。  

主要流程就是:

1. 读取imdb,主要就是测试数据的位置等信息。

2.   然后循环读取图片,进行网络的前向传播,获取rois(rpn提取的box),cls_prob(fast rcnn预测的分数),bbox_pred(fast rcnn预测地偏移)。

使用它们进行最后的box的生成。

3. 使用nms去重

4. 按照分数大小排序,获取一定量的proposals. 


整个测试网络文件位于:./models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt 

网络结构如下:



发布了132 篇原创文章 · 获赞 196 · 访问量 80万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览