图像金字塔总结

290人阅读 评论(0) 收藏 举报
分类:
本文转载自:http://blog.csdn.net/dcrmg/article/details/52561656    

一、 图像金字塔


图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺寸)逐渐降低的图像,一直到金字塔的顶部只包含一个像素点的图像,这就构成了传统意义上的图像金字塔。





获得图像金字塔一般包括二个步骤:

1. 利用低通滤波器平滑图像 

2. 对平滑图像进行抽样(采样)

有两种采样方式——上采样(分辨率逐级升高)和下采样(分辨率逐级降低)


上采样:




下采样:




二、高斯金字塔


高斯金字塔式在Sift算子中提出来的概念,首先高斯金字塔并不是一个金字塔,而是有很多组(Octave)金字塔构成,并且每组金字塔都包含若干层(Interval)。

高斯金字塔构建过程:

1. 先将原图像扩大一倍之后作为高斯金字塔的第1组第1层,将第1组第1层图像经高斯卷积(其实就是高斯平滑或称高斯滤波)之后作为第1组金字塔的第2层,高斯卷积函数为:



对于参数σ,在Sift算子中取的是固定值1.6。

2. 将σ乘以一个比例系数k,等到一个新的平滑因子σ=k*σ,用它来平滑第1组第2层图像,结果图像作为第3层。

3. 如此这般重复,最后得到L层图像,在同一组中,每一层图像的尺寸都是一样的,只是平滑系数不一样。它们对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。

4.  将第1组倒数第三层图像作比例因子为2的降采样,得到的图像作为第2组的第1层,然后对第2组的第1层图像做平滑因子为σ的高斯平滑,得到第2组的第2层,就像步骤2中一样,如此得到第2组的L层图像,同组内它们的尺寸是一样的,对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。但是在尺寸方面第2组是第1组图像的一半。

这样反复执行,就可以得到一共O组,每组L层,共计O*L个图像,这些图像一起就构成了高斯金字塔,结构如下:




在同一组内,不同层图像的尺寸是一样的,后一层图像的高斯平滑因子σ是前一层图像平滑因子的k倍;

在不同组内,后一组第一个图像是前一组倒数第三个图像的二分之一采样,图像大小是前一组的一半;


高斯金字塔图像效果如下,分别是第1组的4层和第2组的4层:


        



三、 尺度空间



图像的尺度空间解决的问题是如何对图像在所有尺度下描述的问题。

在高斯金字塔中一共生成O组L层不同尺度的图像,这两个量合起来(O,L)就构成了高斯金字塔的尺度空间,也就是说以高斯金字塔的组O作为二维坐标系的一个坐标,不同层L作为另一个坐标,则给定的一组坐标(O,L)就可以唯一确定高斯金字塔中的一幅图像。

尺度空间的形象表述:



上图中尺度空间中k前的系数n表示的是第一组图像尺寸是当前组图像尺寸的n倍。



四、 DOG金字塔


差分金字塔,DOG(Difference of Gaussian)金字塔是在高斯金字塔的基础上构建起来的,其实生成高斯金字塔的目的就是为了构建DOG金字塔。

DOG金字塔的第1组第1层是由高斯金字塔的第1组第2层减第1组第1层得到的。以此类推,逐组逐层生成每一个差分图像,所有差分图像构成差分金字塔。概括为DOG金字塔的第o组第l层图像是有高斯金字塔的第o组第l+1层减第o组第l层得到的。

DOG金字塔的构建可以用下图描述:




每一组在层数上,DOG金字塔比高斯金字塔少一层。后续Sift特征点的提取都是在DOG金字塔上进行的。

DOG金字塔的显示效果如下:




这些长得黑乎乎的图像就是差分金字塔的实际显示效果,只在第1组第1层差分图像上模糊可以看到一个轮廓。但其实这里边包含了大量特征点信息,只是我们人眼已经分辨不出来了。

下边对这些DOG图像进行归一化,可有很明显的看到差分图像所蕴含的特征,并且有一些特征是在不同模糊程度、不同尺度下都存在的,这些特征正是Sift所要提取的“稳定”特征:




附带说一下后面的归一化,在图像处理中是很常见的操作,主要原因是亮度不均匀,显然偏暗。因此我们希望灰度值分布较为均匀些,因此我们可以将当前的像素灰度值缩放到[0,255]即可。具体可参考《MATLAB实现图像灰度归一化


参考资料:
1. 深度学习目标检测中的图像金字塔 pyramid

2. 图像金字塔



查看评论

VB + Winsock + CGI 实现 QQ (OICQ) 在线检测

VB + Winsock + CGI 实现 QQ (OICQ) 在线检测(支持代理服务器)!标准 EXE 例程下载http://microinfo.top263.net/Zip/WskQQExe.zi...
  • playyuer
  • playyuer
  • 2001-07-02 15:18:00
  • 1301

Atitit 图像金字塔原理与概率 attilax的理解总结qb23

Atitit 图像金字塔原理与概率 attilax的理解总结qb23   1.1. 高斯金字塔  (  Gaussianpyramid): 拉普拉斯金字塔 (Laplacianpyramid...
  • attilax
  • attilax
  • 2016-11-24 17:26:04
  • 580

OpenCV实现图像金字塔

目的: 使用OpenCV中的函数 cv::pyrUp 和 cv::pyrDown 对给定的图像下采样和上采样(downsample 和 upsample). 理论 一般需要把图像的尺寸调整为和...
  • Real_Myth
  • Real_Myth
  • 2016-11-09 00:16:28
  • 1115

图像金字塔(pyramid)与 SIFT 图像特征提取(feature extractor)

David Lowe 1. SIFTSIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest poin...
  • lanchunhui
  • lanchunhui
  • 2016-11-10 11:55:18
  • 856

深度学习目标检测中的图像金字塔 pyramid

在深度学习中,有个基本概念:图像金字塔,我们常常在论文中看到这个词pyramid,下面通过一副效果图来看下什么是图像金字塔:        即对图像进行一定比例的缩放,有必要的话还得加上 平滑图像的...
  • wuzhiyang95_xiamen
  • wuzhiyang95_xiamen
  • 2017-02-07 18:31:02
  • 1225

图像算法之十:图像金字塔

一、基本原理       图像金字塔常用作多分辨率模型。视频图像的多分辨率模型是视频图像处理的重要方法。 图像金字塔包括高斯金字塔和拉普拉斯金字塔两种实现形式。 1、高斯金字塔:   高斯金字...
  • SoaringLee_fighting
  • SoaringLee_fighting
  • 2016-10-06 16:48:16
  • 3128

【OpenCV】图像金字塔详解及编程实现

图像金字塔被广泛用于各种视觉应用中。图像金字塔是一个图像集合,集合中所有的图像都源于同一个原始图像,而且是通过对原始图像连续降采样获得,直到达到某个中止条件才停止降采样。有两种类型的图像金字塔常常出现...
  • u010418035
  • u010418035
  • 2015-04-17 17:09:25
  • 1779

OpenCV-Python——图像金字塔

  • NOT_GUY
  • NOT_GUY
  • 2017-10-06 22:25:17
  • 156

opencv c++函数 imgproc模块 4 图像金字塔

目标 本文档尝试解答如下问题: 如何使用OpenCV函数 pyrUp 和 pyrDown 对图像进行向上和向下采样。 原理 Note   以下内容来自于Br...
  • android_asp
  • android_asp
  • 2013-04-26 16:30:43
  • 1226

图像形态学-图像金字塔

图像金字塔被广泛应用于各种视觉应用中。图像金字塔是一个图像集合,集合中图像都源于同一个原始图像,而且是通过对原始图像连续降采样获得,直到达到某个中止条件才停止降采样。(当然,降为一个像素肯定是中止条件...
  • yeqiu712
  • yeqiu712
  • 2011-05-04 14:38:00
  • 1598
    个人资料
    持之以恒
    等级:
    访问量: 35万+
    积分: 4782
    排名: 7586
    个人网站
    最新评论