FCN-加载训练与测试数据

标签: fcn
264人阅读 评论(0) 收藏 举报
分类:

当我们生成了数据后,我们来看看FCN是如何加载数据的。

FCN 代码预览

这里写图片描述

其中:
- data : 训练测试数据
- ilsvrc-nets:存放预训练的模型
- 剩下的框:不同数据集的训练测试prototxt
- voc_layers,siftflow_layers等:数据生成层
- snapshot:保存快照(若没有自建)

加载训练测试数据

我们从solve.py看起。
在这里郑重声明一下:如果训练fcn32s的网络模型,一定要修改solve.py利用transplant的方式获取vgg16的网络权重。
具体操作为:

import sys  
sys.path.append('/home/hitoia/caffe/python')
import caffe
import surgery, score

import numpy as np
import os
import sys

try:
    import setproctitle
    setproctitle.setproctitle(os.path.basename(os.getcwd()))
except:
    pass

vgg_weights = '../ilsvrc-nets/vgg16-fcn.caffemodel'  
vgg_proto = '../ilsvrc-nets/VGG_ILSVRC_16_layers_deploy.prototxt'  
weights = '../ilsvrc-nets/vgg16-fcn.caffemodel'
#weights = '../ilsvrc-nets/vgg16-fcn.caffemodel'

# init
#caffe.set_device(int(sys.argv[1]))
caffe.set_mode_gpu()
caffe.set_device(0)

#solver = caffe.SGDSolver('solver.prototxt')
#solver.net.copy_from(weights)
solver = caffe.SGDSolver('solver.prototxt')
vgg_net=caffe.Net(vgg_proto,vgg_weights,caffe.TRAIN) 
surgery.transplant(solver.net,vgg_net)  
del vgg_net

# surgeries
interp_layers = [k for k in solver.net.params.keys() if 'up' in k]
surgery.interp(solver.net, interp_layers)

# scoring
val = np.loadtxt('/home/hitoia/fcn.berkeleyvision.org/data/pascal/VOCdevkit/VOC2012/ImageSets/Segmentation/seg11valid.txt', dtype=str) #seg11valid就是测试数据

for _ in range(25):
    solver.step(1000)
    score.seg_tests(solver, False, val, layer='score')

关于VGG_ILSVRC_16_layers_deploy.prototxt 可以在http://pan.baidu.com/s/1geLL6Sz下载。

如果训练fcn16s,则可以直接copy自己的fcn32s的model的权重,不需要transplant,也就是不需要修改solve.py
如果训练fcn8s,则可以直接copy自己的fcn16s的model的权重,不需要transplant,也就是不需要修改solve.py
只有如此,才能避免loss高居不下的情况

【注意:】为什么这里要使用transplant?
参考:http://www.cnblogs.com/xuanxufeng/p/6243342.html
这里写图片描述

其实主要是因为vgg中包含了fc6,fc7等全连接层,而FCN中将之改成了全卷积层,二者性质不同,但仍然可以将全连接层的参数拷贝到全卷积层上,也就是这里的transplant所起的作用。

这里的:

for _ in range(25):
    solver.step(1000)
    score.seg_tests(solver, False, val, layer='score')

奇怪的现象:修改solver.prototxt中的max_iter: 100000没有改变最大迭代次数,只有改变这个step里的数字才有用,这里最大迭代次数等于25*1000 = 25000次。

而至于训练数据的加载,则在train.prototxt中

layer {
  name: "data"
  type: "Python"
  top: "data"
  top: "label"
  python_param {
    module: "voc_layers"
    layer: "SBDDSegDataLayer"
    param_str: "{\'sbdd_dir\': \'../data/sbdd/dataset\', \'seed\': 1337, \'split\': \'train\', \'mean\': (104.00699, 116.66877, 122.67892)}"
  }
}

param_str包含了训练数据加载的参数:sbdd_dir,split

label的加载

上一篇《FCN-数据篇》 讲述了如何生成label数据,
生成索引图后,本应该 制作mat文件,但是有点麻烦,参考了网上的资料,修改代码,使得这里也可以直接存放索引图。
修改fcn目录下的voc_layers.py
注释掉原本的load_label ,修改为新的

#    def load_label(self, idx):
#        """
#        Load label image as 1 x height x width integer array of label indices.
#        The leading singleton dimension is required by the loss.
#        """
#        import scipy.io
#        mat = scipy.io.loadmat('{}/cls/{}.mat'.format(self.sbdd_dir, idx))
#        label = mat['GTcls'][0]['Segmentation'][0].astype(np.uint8)
#        label = label[np.newaxis, ...]
#        return label

    def load_label(self, idx):
        """
        Load label image as 1 x height x width integer array of label indices.
        The leading singleton dimension is required by the loss.
        """
        im = Image.open('{}/cls/{}.png'.format(self.sbdd_dir, idx))
        label = np.array(im, dtype=np.uint8)
        label = label[np.newaxis, ...]
        return label

这里的label载入都是0,1等的索引值,代表分割种类。

参考

  1. ubuntu下caffe的FCN8模型训练
  2. FCN网络的训练——以SIFT-Flow 数据集为例
查看评论

FCN制作自己的数据集、训练和测试全流程

** FCN制作自己的数据集、训练和测试全流程 ** 花了两三周的时间,在导师的催促下,把FCN的全部流程走了一遍,期间走了很多弯路,现在记录一下。系统环境:ubuntu 16.04LTS 一、数据...
  • a8039974
  • a8039974
  • 2017-11-22 14:02:17
  • 380

solve.py 调试

Q1: Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type I1221 19:43:06.790405 1289...
  • chunyes
  • chunyes
  • 2016-07-05 12:57:21
  • 4656

训练数据、测试数据和验证数据

一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。但是,有时候模型的构建过程中也需要检验模型,辅助模型构建,所以会将训练数据在分为两个部分:1)训...
  • a1241314660
  • a1241314660
  • 2017-04-23 15:16:32
  • 2691

关于机器学习的训练数据、验证数据和测试数据的形象比喻

机器学习最明显的一个特点是需要大量的数据。特别对监督学习来说,就是需要大量的带标签数据(labeled data)。 很多入门的朋友很快就会遇见模型训练和测试这两个阶段,进而也就了解到带标签数据...
  • chenhaifeng2016
  • chenhaifeng2016
  • 2017-06-24 12:49:03
  • 1847

BP神经网络JAVA实现源码(含两套训练测试数据)

  • 2017年12月14日 00:28
  • 8KB
  • 下载

将读取的数据分为测试数据和训练数据

网上找了好多页没有找到如何把数据分开的代码,我今天给大家写一个比较
  • blog_empire
  • blog_empire
  • 2014-10-25 20:54:16
  • 1660

SVM训练和测试数据

  • 2013年12月12日 23:04
  • 2KB
  • 下载

训练数据,验证数据和测试数据的概念(转)

训练数据,验证数据和测试数据 一般做预测分析时,会将数据分为两大部分。一部分是训练数据,用于构建模型,一部分是测试数据,用于检验模型。但是,有时候模型的构建过程中也需要检验模型,辅助模型构建...
  • u014617685
  • u014617685
  • 2014-04-18 16:40:38
  • 1180

libsvm分类训练和测试数据语料

  • 2016年11月02日 12:13
  • 199KB
  • 下载

机器学习和数据挖掘(5):训练与测试

回顾与说明不像上一章的学习流程图,我们这里假设可学习的数据来自于一个统一的分布(不考虑噪声的情况),且假设空间中的假设函数为有限个的情况下,其学习流程图如图所示。我们这里假设训练样本和测试样本本来自同...
  • u013007900
  • u013007900
  • 2017-07-21 11:05:03
  • 533
    个人资料
    持之以恒
    等级:
    访问量: 34万+
    积分: 4749
    排名: 7682
    个人网站
    最新评论