生如蚁,美如神

众里寻她千百度,蓦然回首,那人却在灯火阑珊处

排序:
默认
按更新时间
按访问量

faster rcnn end2end 训练与测试

除了前面讲过的rpn与fast rcnn交替训练外,faster rcnn还提供了一种近乎联合的训练,姑且称为end2end训练。 根据论文所讲,end2end的训练一气呵成,对于前向传播,rpn可以作为预设的网络提供proposal.而在后向传播中,rpn,与fast rcnn分别传导,而汇聚到...

2017-11-14 22:58:14

阅读数:2365

评论数:1

faster rcnn的测试

当训练结束后,faster rcnn的模型保存在在py-faster-rcnn/output目录下,这时就可以用已有的模型对新的数据进行测试。 下面简要说一下测试流程。 测试的主要代码是./tools/test_net.py,并且使用到了fast_rcnn中test.py。  ...

2017-11-13 21:57:14

阅读数:527

评论数:0

faster rcnn在自己的数据集上训练

本文是一个总结,参考了网上的众多资料,汇集而成,以供自己后续参考。 一般说来,训练自己的数据,有两种方法:第一种就是将自己的数据集完全改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,然后相应地改变相应模型的参数,比如种类等。 data目录下存放的数据如下: V...

2017-11-13 18:44:43

阅读数:452

评论数:2

Iris recognition papers in the top journals in 2017

转载自:https://kiennguyenstuff.wordpress.com/2017/10/05/iris-recognition-papers-in-the-top-journals-in-2017/ Top journals: – IEEE Transactio...

2017-11-10 17:47:13

阅读数:257

评论数:0

faster rcnn学习之rpn 的生成

接着上一节《 faster rcnn学习之rpn训练全过程》,假定我们已经训好了rpn网络,下面我们看看如何利用训练好的rpn网络生成proposal. 其网络为rpn_test.pt # Enter your network definition here. # Use Shift+Enter ...

2017-11-08 23:05:53

阅读数:635

评论数:1

faster rcnn学习之rpn训练全过程

上篇我们讲解了rpn与fast rcnn的数据准备阶段,接下来我们讲解rpn的整个训练过程。最后 讲解rpn训练完毕后rpn的生成。 我们顺着stage1_rpn_train.pt的内容讲解。 name: "VGG_CNN_M_1024" layer { name: 'in...

2017-11-08 18:55:29

阅读数:3938

评论数:0

faster rcnn学习之rpn、fast rcnn数据准备说明

在上文《 faster-rcnn系列学习之准备数据》,我们已经介绍了imdb与roidb的一些情况,下面我们准备再继续说一下rpn阶段和fast rcnn阶段的数据准备整个处理流程。 由于这两个阶段的数据准备有些重合,所以放在一起说明。 我们并行地从train_rpn与train_fast_rcn...

2017-11-08 13:57:12

阅读数:1355

评论数:0

Faster RCNN minibatch.py解读

minibatch.py 的功能是: Compute minibatch blobs for training a Fast R-CNN network. 与roidb不同的是, minibatch中存储的并不是完整的整张图像图像,而是从图像经过转换后得到的四维blob以及从图像中截取的propo...

2017-11-06 23:48:33

阅读数:1311

评论数:0

py-faster-rcnn代码roidb.py的解读

roidb是比较复杂的数据结构,存放了数据集的roi信息。原始的roidb来自数据集,在trian.py的get_training_roidb(imdb)函数进行了水平翻转扩充数量,然后prepare_roidb(imdb)【定义在roidb.py】为roidb添加了一些说明性的属性。 在这...

2017-11-05 19:58:32

阅读数:696

评论数:0

faster-rcnn系列学习之准备数据

如下列举了 将数据集做成VOC2007格式用于Faster-RCNN训练的相关链接。 RCNN系列实验的PASCAL VOC数据集格式设置 制作VOC2007数据集用于Faster-RCNN训练 将数据集做成VOC2007格式用于Faster-RCNN训练 这一篇比较详细地介绍了如何制造voc...

2017-11-05 15:39:20

阅读数:1261

评论数:0

caffe 初学参考链接

最近在学习caffe,也搜集了一些资料,主要是一些网上公开的博客资源,现汇总一下,以便后面参考。caffe 安装 编译py-faster-rcnn全过程 caffe依赖库安装(非root) 编译py-faster-rcnn的问题汇总及解决方法 caffe 基本架构 python版本 Caffe ...

2017-10-29 22:09:00

阅读数:215

评论数:0

conda环境管理介绍

我们可以使用conda 来切换不同的环境,主要的用法如下: 1. 创建环境 # 指定python版本为2.7,注意至少需要指定python版本或者要安装的包 # 后一种情况下,自动安装最新python版本 conda create -n env_name python=2.7 # 同时安装...

2017-10-28 15:43:36

阅读数:439

评论数:0

如何修改PKG_CONFIG_PATH环境变量

两种情况,如果你只是想加上某库的pkg,则选择下面其一: export PKG_CONFIG_PATH=/usr/lib/pkgconfig/  或者  export PKG_CONFIG_LIBDIR=/usr/lib/pkgconfig/  如果你想覆盖掉原来的pkg,...

2017-10-27 23:58:18

阅读数:6749

评论数:0

R-CNN detection 运行问题及办法

运行caffe官方提供的jupyter 的rcnn detection,总是出现各种问题。先将问题及方法汇集在此: 1. Selective Search 的安装问题 按照官网,我下载了selective_search_ijcv_with_python,但是在我的linux matl...

2017-10-26 20:55:10

阅读数:645

评论数:0

由Google Protocol Buffer的小例子引起的g++编译问题

问题学习 Google Protocol Buffer 的使用和原理时,提供了一个小例子,讲述了protobuf的使用方法。假如已经有了如下文件: 其中writer.cpp如下:#include "lm.helloworld.pb.h" #include<i...

2017-10-25 11:34:52

阅读数:200

评论数:0

Makefile中 -I -L -l区别

转载自:http://blog.csdn.net/davion_zhang/article/details/41805641 我们用gcc编译程序时,可能会用到“-I”(大写i),“-L”(大写l),“-l”(小写l)等参数,下面做个记录: 例: gcc -o hello hello.c -...

2017-10-23 20:15:31

阅读数:110

评论数:0

/usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.15' not found错误的解决

转载自:http://www.cnblogs.com/weinyzhou/p/4983306.html 升级cmake时,提示“Error when bootstrapping CMake:Problem while running initial CMake”,第二次运行./bootst...

2017-10-23 15:14:01

阅读数:392

评论数:0

【论文阅读】Illuminating Pedestrians via Simultaneous Detection & Segmentation

论文来源 ICCV2017 arXiv report github代码(caffe-matlab) 本文的主要问题是行人检测。作者探讨了如何将语义分割应用在行人检测上,提高检测率,同时也不损坏检测效率。作者提出了一种语义融合网络(segmentation infusion networks)去促...

2017-10-22 15:26:37

阅读数:943

评论数:0

图像极坐标变换及在OCR中的应用

极坐标变换定义我们知道在二维坐标系中,有直角坐标系,也有极坐标系,二者的转换关系是: 如下图: 如图,直角坐标系的圆心与极坐标系的圆心一一对应,且圆弧BA可以通过极坐标变换到极坐标系ρ=r\rho=r的一条直线上,实现由圆形到直线的转换。这往往在一些图像处理中很有用。实际上,我...

2017-10-22 14:53:36

阅读数:1490

评论数:0

softmax logistic loss详解

softmax函数–softmax layersoftmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组z=(z1,z2,...zm)z=(z_1,z_2,...z_m),则其softmax函数定义如下: σi(z)=e...

2017-10-22 13:56:01

阅读数:1237

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭