当前搜索:

源码安装libjpeg-turbo1.2.1,无root权限

首先说明我的系统是redhat linux64位。没有root权限。我们想安装libjpeg-turbo. 下面介绍具体的安装步骤。本来想安装最新的版本,但是最后失败了,无奈安装成1.2.1.1. 下载源码: https://zh.osdn.net/projects/sfnet_libjpeg-t...
阅读(2) 评论(0)

源码安装NASM,无root权限

首先说明我的系统是redhat linux64位。没有root权限。我们想安装nasm2.13. 下面介绍具体的安装步骤。1. 下载源码: https://www.nasm.us/pub/nasm/releasebuilds/2.13/ 选择nasm-2.13-xdoc.tar.gz下载在本地目录...
阅读(4) 评论(0)

源码安装Bazel

有时候我们需要源码安装tensorflow,这时逃不过的第一步就是安装Bazel,如果没有root权限的时候,这时我们就需要源码安装Bazel了。下面是安装步骤,参考:https://docs.bazel.build/versions/master/install-compile-source.h...
阅读(18) 评论(0)

安装oracle-java,并覆盖原先的OpenJDK

Centos默认安装openJDK只安装了java,没有安装javac.如果需要安装javac,需要install the openjdk-8-jdk package。参考:http://openjdk.java.net/install/为了完整地安装java,我们转而选择使用oracle-jav...
阅读(8) 评论(0)

caffe 关于Deconvolution的初始化注意事项

对于fcn,经常要使用到Deconvolution进行上采样。对于caffe使用者,使用Deconvolution上采样,其参数往往直接给定,不需要通过学习获得。 给定参数的方式很有意思,可以通过两种方式实现,但是这两种方式并非完全等价,各有各的价值。 第一种方式: 通过net_surge...
阅读(68) 评论(0)

sigmoid函数的数值稳定性

在深度学习中,我们常常选用sigmoid函数作为激活函数。sigmoid函数的具体形式如下: f(x)=11+e−x f(x)=\frac{1}{1+e^{-x}} 曲线表示为: 再画大一点,取x区间更大一些,则为: 显然...
阅读(146) 评论(0)

语义分割深度学习方法集锦

转载:https://github.com/handong1587/handong1587.github.io/edit/master/_posts/deep_learning/2015-10-09-segmentation.mdPapersDeep Joint Task Learning for...
阅读(1759) 评论(1)

deeplab运行指南

以下仅仅为一个总结,参考了网上的众多资料,仅备忘记。主要链接 deeplab主页:http://liangchiehchen.com/projects/DeepLab.html 官方代码:https://bitbucket.org/aquariusjay/deeplab-public-ver2 p...
阅读(902) 评论(1)

关于FCN的数据集着色说明

前方我们讲解了《 FCN-数据篇》。里面包含了如何制作类似pascal voc的label。很大篇幅在谈如何着色,如何转化为索引图像。 由于一些内容参考网上的资料,所以对里面的一些操作含义也有些糊涂。 其实网上的东西也不都对,很多人云亦云。所以需要我们仔细甄别。 其中我就发现了一个错误。我们来从头...
阅读(559) 评论(0)

正则表达式及其在python上的应用

今天学习了一早上正则表达式。如下内容部分转载自《读懂正则表达式就这么简单》 一、什么是正则表达式 正则表达式是一种特殊的字符串模式,用于匹配一组字符串,就好比用模具做产品,而正则就是这个模具,定义一种规则去匹配符合规则的字符。 1.2 常用的正则匹配工具 在线匹配工具: 1. ...
阅读(170) 评论(0)

FCN-加载训练与测试数据

当我们生成了数据后,我们来看看FCN是如何加载数据的。FCN 代码预览其中: - data : 训练测试数据 - ilsvrc-nets:存放预训练的模型 - 剩下的框:不同数据集的训练测试prototxt - voc_layers,siftflow_layers等:数据生成层 ...
阅读(264) 评论(0)

FCN-数据篇

从本篇开始,我们来记录一下全卷积网络用来做语义分割的全过程。 代码:https://github.com/shelhamer/fcn.berkeleyvision.org 下面我们将描述三方面的内容: 1. 官方提供的公开数据集 2. 自己的数据集如何准备,主要是如何标注label 3. ...
阅读(892) 评论(1)

Mask RCNN笔记

mask rcnn简介mask rcnn是何凯明基于以往的faster rcnn架构提出的新的卷积网络,一举完成了object instance segmentation. 该方法在有效地目标的同时完成了高质量的语义分割。 文章的主要思路就是把原有的Faster-RCNN进行扩展,添加一个分支使用...
阅读(1435) 评论(0)

Feature Pyramid Networks for Object Detection 总结

最近在阅读FPN for object detection,看了网上的很多资料,有些认识是有问题的,当然有些很有价值。下面我自己总结了一下,以供参考。 1. FPN解决了什么问题?答: 在以往的faster rcnn进行目标检测时,无论是rpn还是fast rcnn,roi 都作用在最后一层,这在...
阅读(565) 评论(1)

图像金字塔总结

本文转载自:http://blog.csdn.net/dcrmg/article/details/52561656     一、 图像金字塔 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的...
阅读(271) 评论(0)

Visual Studio 2008 环境变量的配置(参考设置VS2010)

本文转载自:http://blog.csdn.net/tracyliang223/article/details/21539361 COPY FROM:http://www.cnblogs.com/waterlin/archive/2011/10/31/2230341.html ...
阅读(166) 评论(0)

visual studio 2015安装 无法启动程序,因为计算机丢失D3DCOMPILER_47.dll 的解决方法

对于题目中的解决方法,我查到了微软提供的一个方案:https://support.microsoft.com/en-us/help/4019990/update-for-the-d3dcompiler-47-dll-component-on-windows 进入如下页面:http://www.ca...
阅读(9109) 评论(4)

faster rcnn end2end 训练与测试

除了前面讲过的rpn与fast rcnn交替训练外,faster rcnn还提供了一种近乎联合的训练,姑且称为end2end训练。 根据论文所讲,end2end的训练一气呵成,对于前向传播,rpn可以作为预设的网络提供proposal.而在后向传播中,rpn,与fast rcnn分别传导,而汇聚到...
阅读(687) 评论(0)

faster rcnn的测试

当训练结束后,faster rcnn的模型保存在在py-faster-rcnn/output目录下,这时就可以用已有的模型对新的数据进行测试。 下面简要说一下测试流程。 测试的主要代码是./tools/test_net.py,并且使用到了fast_rcnn中test.py。  ...
阅读(331) 评论(0)

faster rcnn在自己的数据集上训练

本文是一个总结,参考了网上的众多资料,汇集而成,以供自己后续参考。 一般说来,训练自己的数据,有两种方法:第一种就是将自己的数据集完全改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,然后相应地改变相应模型的参数,比如种类等。 data目录下存放的数据如下: V...
阅读(246) 评论(0)
    个人资料
    持之以恒
    等级:
    访问量: 34万+
    积分: 4749
    排名: 7613
    个人网站
    最新评论