ThreadPoolExecutor机制
一、概述
1、ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线程调度,线程池管理等等服务;
2、Executors方法提供的线程服务,都是通过参数设置来实现不同的线程池机制。
3、先来了解其线程池管理的机制,有助于正确使用,避免错误使用导致严重故障。同时可以根据自己的需求实现自己的线程池
二、核心构造方法讲解
下面是ThreadPoolExecutor最核心的构造方法
构造方法参数讲解
重点讲解:
其中比较容易让人误解的是:corePoolSize,maximumPoolSize,workQueue之间关系。
1.当线程池小于corePoolSize时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。
2.当线程池达到corePoolSize时,新提交任务将被放入workQueue中,等待线程池中任务调度执行
3.当workQueue已满,且maximumPoolSize>corePoolSize时,新提交任务会创建新线程执行任务
4.当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理
5.当线程池中超过corePoolSize线程,空闲时间达到keepAliveTime时,关闭空闲线程
6.当设置allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭
线程管理机制图示:
三、Executors提供的线程池配置方案
1、构造一个固定线程数目的线程池,配置的corePoolSize与maximumPoolSize大小相同,同时使用了一个无界LinkedBlockingQueue存放阻塞任务,因此多余的任务将存在再阻塞队列,不会由RejectedExecutionHandler处理
2、构造一个缓冲功能的线程池,配置corePoolSize=0,maximumPoolSize=Integer.MAX_VALUE,keepAliveTime=60s,以及一个无容量的阻塞队列 SynchronousQueue,因此任务提交之后,将会创建新的线程执行;线程空闲超过60s将会销毁
3、构造一个只支持一个线程的线程池,配置corePoolSize=maximumPoolSize=1,无界阻塞队列LinkedBlockingQueue;保证任务由一个线程串行执行
4、构造有定时功能的线程池,配置corePoolSize,无界延迟阻塞队列DelayedWorkQueue;有意思的是:maximumPoolSize=Integer.MAX_VALUE,由于DelayedWorkQueue是无界队列,所以这个值是没有意义的
四、定制属于自己的非阻塞线程池
方法中建立一个核心线程数为30个,缓冲队列有10个的线程池。每个线程任务,执行时会先睡眠3秒,保证提交10任务时,线程数目被占用完,再提交30任务时,阻塞队列被占用完,,这样提交第41个任务是,会交给CustomRejectedExecutionHandler 异常处理类来处理。
提交任务的代码如下:
注意:41以后提交的任务就不能正常处理了,因为,execute中提交到任务队列是用的offer方法,如上面代码,这个方法是非阻塞的,所以就会交给CustomRejectedExecutionHandler 来处理,所以对于大数据量的任务来说,这种线程池,如果不设置队列长度会OOM,设置队列长度,会有任务得不到处理,接下来我们构建一个阻塞的自定义线程池
五、定制属于自己的阻塞线程池
解释:当提交任务被拒绝时,进入拒绝机制,我们实现拒绝方法,把任务重新用阻塞提交方法put提交,实现阻塞提交任务功能,防止队列过大,OOM,提交被拒绝方法在下面
总结:
1、用ThreadPoolExecutor自定义线程池,看线程是的用途,如果任务量不大,可以用无界队列,如果任务量非常大,要用有界队列,防止OOM
2、如果任务量很大,还要求每个任务都处理成功,要对提交的任务进行阻塞提交,重写拒绝机制,改为阻塞提交。保证不抛弃一个任务
3、最大线程数一般设为2N+1最好,N是CPU核数
4、核心线程数,看应用,如果是任务,一天跑一次,设置为0,合适,因为跑完就停掉了,如果是常用线程池,看任务量,是保留一个核心还是几个核心线程数
5、如果要获取任务执行结果,用CompletionService,但是注意,获取任务的结果的要重新开一个线程获取,如果在主线程获取,就要等任务都提交后才获取,就会阻塞大量任务结果,队列过大OOM,所以最好异步开个线程获取结果
一、概述
1、ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线程调度,线程池管理等等服务;
2、Executors方法提供的线程服务,都是通过参数设置来实现不同的线程池机制。
3、先来了解其线程池管理的机制,有助于正确使用,避免错误使用导致严重故障。同时可以根据自己的需求实现自己的线程池
二、核心构造方法讲解
下面是ThreadPoolExecutor最核心的构造方法
- public ThreadPoolExecutor(int corePoolSize,
- int maximumPoolSize,
- long keepAliveTime,
- TimeUnit unit,
- BlockingQueue<Runnable> workQueue,
- ThreadFactory threadFactory,
- RejectedExecutionHandler handler) {
- if (corePoolSize < 0 ||
- maximumPoolSize <= 0 ||
- maximumPoolSize < corePoolSize ||
- keepAliveTime < 0)
- throw new IllegalArgumentException();
- if (workQueue == null || threadFactory == null || handler == null)
- throw new NullPointerException();
- this.corePoolSize = corePoolSize;
- this.maximumPoolSize = maximumPoolSize;
- this.workQueue = workQueue;
- this.keepAliveTime = unit.toNanos(keepAliveTime);
- this.threadFactory = threadFactory;
- this.handler = handler;
- }
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
构造方法参数讲解
参数名 | 作用 |
corePoolSize | 核心线程池大小 |
maximumPoolSize | 最大线程池大小 |
keepAliveTime | 线程池中超过corePoolSize数目的空闲线程最大存活时间;可以allowCoreThreadTimeOut(true)使得核心线程有效时间 |
TimeUnit | keepAliveTime时间单位 |
workQueue | 阻塞任务队列 |
threadFactory | 新建线程工厂 |
RejectedExecutionHandler | 当提交任务数超过maxmumPoolSize+workQueue之和时,任务会交给RejectedExecutionHandler来处理 |
重点讲解:
其中比较容易让人误解的是:corePoolSize,maximumPoolSize,workQueue之间关系。
1.当线程池小于corePoolSize时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。
2.当线程池达到corePoolSize时,新提交任务将被放入workQueue中,等待线程池中任务调度执行
3.当workQueue已满,且maximumPoolSize>corePoolSize时,新提交任务会创建新线程执行任务
4.当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理
5.当线程池中超过corePoolSize线程,空闲时间达到keepAliveTime时,关闭空闲线程
6.当设置allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭
线程管理机制图示:
三、Executors提供的线程池配置方案
1、构造一个固定线程数目的线程池,配置的corePoolSize与maximumPoolSize大小相同,同时使用了一个无界LinkedBlockingQueue存放阻塞任务,因此多余的任务将存在再阻塞队列,不会由RejectedExecutionHandler处理
- public static ExecutorService newFixedThreadPool(int nThreads) {
- return new ThreadPoolExecutor(nThreads, nThreads,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue<Runnable>());
- }
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
2、构造一个缓冲功能的线程池,配置corePoolSize=0,maximumPoolSize=Integer.MAX_VALUE,keepAliveTime=60s,以及一个无容量的阻塞队列 SynchronousQueue,因此任务提交之后,将会创建新的线程执行;线程空闲超过60s将会销毁
- public static ExecutorService newCachedThreadPool() {
- return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
- 60L, TimeUnit.SECONDS,
- new SynchronousQueue<Runnable>());
- }
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
3、构造一个只支持一个线程的线程池,配置corePoolSize=maximumPoolSize=1,无界阻塞队列LinkedBlockingQueue;保证任务由一个线程串行执行
- public static ExecutorService newSingleThreadExecutor() {
- return new FinalizableDelegatedExecutorService
- (new ThreadPoolExecutor(1, 1,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue<Runnable>()));
- }
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
4、构造有定时功能的线程池,配置corePoolSize,无界延迟阻塞队列DelayedWorkQueue;有意思的是:maximumPoolSize=Integer.MAX_VALUE,由于DelayedWorkQueue是无界队列,所以这个值是没有意义的
- public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
- return new ScheduledThreadPoolExecutor(corePoolSize);
- }
- public static ScheduledExecutorService newScheduledThreadPool(
- int corePoolSize, ThreadFactory threadFactory) {
- return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
- }
- public ScheduledThreadPoolExecutor(int corePoolSize,
- ThreadFactory threadFactory) {
- super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
- new DelayedWorkQueue(), threadFactory);
- }
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
}
public ScheduledThreadPoolExecutor(int corePoolSize,
ThreadFactory threadFactory) {
super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
new DelayedWorkQueue(), threadFactory);
}
四、定制属于自己的非阻塞线程池
- import java.util.concurrent.ArrayBlockingQueue;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.RejectedExecutionHandler;
- import java.util.concurrent.ThreadFactory;
- import java.util.concurrent.ThreadPoolExecutor;
- import java.util.concurrent.TimeUnit;
- import java.util.concurrent.atomic.AtomicInteger;
- public class CustomThreadPoolExecutor {
- private ThreadPoolExecutor pool = null;
- /**
- * 线程池初始化方法
- *
- * corePoolSize 核心线程池大小—-10
- * maximumPoolSize 最大线程池大小—-30
- * keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间—-30+单位TimeUnit
- * TimeUnit keepAliveTime时间单位—-TimeUnit.MINUTES
- * workQueue 阻塞队列—-new ArrayBlockingQueue<Runnable>(10)====10容量的阻塞队列
- * threadFactory 新建线程工厂—-new CustomThreadFactory()====定制的线程工厂
- * rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
- * 即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
- * 任务会交给RejectedExecutionHandler来处理
- */
- public void init() {
- pool = new ThreadPoolExecutor(
- 10,
- 30,
- 30,
- TimeUnit.MINUTES,
- new ArrayBlockingQueue<Runnable>(10),
- new CustomThreadFactory(),
- new CustomRejectedExecutionHandler());
- }
- public void destory() {
- if(pool != null) {
- pool.shutdownNow();
- }
- }
- public ExecutorService getCustomThreadPoolExecutor() {
- return this.pool;
- }
- private class CustomThreadFactory implements ThreadFactory {
- private AtomicInteger count = new AtomicInteger(0);
- @Override
- public Thread newThread(Runnable r) {
- Thread t = new Thread(r);
- String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
- System.out.println(threadName);
- t.setName(threadName);
- return t;
- }
- }
- private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
- @Override
- public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
- // 记录异常
- // 报警处理等
- System.out.println(”error………….”);
- }
- }
- // 测试构造的线程池
- public static void main(String[] args) {
- CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
- // 1.初始化
- exec.init();
- ExecutorService pool = exec.getCustomThreadPoolExecutor();
- for(int i=1; i<100; i++) {
- System.out.println(”提交第” + i + “个任务!”);
- pool.execute(new Runnable() {
- @Override
- public void run() {
- try {
- Thread.sleep(3000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println(”running=====”);
- }
- });
- }
- // 2.销毁—-此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
- // exec.destory();
- try {
- Thread.sleep(10000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- }
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class CustomThreadPoolExecutor {
private ThreadPoolExecutor pool = null;
/**
* 线程池初始化方法
*
* corePoolSize 核心线程池大小----10
* maximumPoolSize 最大线程池大小----30
* keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit
* TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES
* workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(10)====10容量的阻塞队列
* threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂
* rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
* 即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
* 任务会交给RejectedExecutionHandler来处理
*/
public void init() {
pool = new ThreadPoolExecutor(
10,
30,
30,
TimeUnit.MINUTES,
new ArrayBlockingQueue<Runnable>(10),
new CustomThreadFactory(),
new CustomRejectedExecutionHandler());
}
public void destory() {
if(pool != null) {
pool.shutdownNow();
}
}
public ExecutorService getCustomThreadPoolExecutor() {
return this.pool;
}
private class CustomThreadFactory implements ThreadFactory {
private AtomicInteger count = new AtomicInteger(0);
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
System.out.println(threadName);
t.setName(threadName);
return t;
}
}
private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
// 记录异常
// 报警处理等
System.out.println("error.............");
}
}
// 测试构造的线程池
public static void main(String[] args) {
CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
// 1.初始化
exec.init();
ExecutorService pool = exec.getCustomThreadPoolExecutor();
for(int i=1; i<100; i++) {
System.out.println("提交第" + i + "个任务!");
pool.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("running=====");
}
});
}
// 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
// exec.destory();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
方法中建立一个核心线程数为30个,缓冲队列有10个的线程池。每个线程任务,执行时会先睡眠3秒,保证提交10任务时,线程数目被占用完,再提交30任务时,阻塞队列被占用完,,这样提交第41个任务是,会交给CustomRejectedExecutionHandler 异常处理类来处理。
提交任务的代码如下:
- public void execute(Runnable command) {
- if (command == null)
- throw new NullPointerException();
- /*
- * Proceed in 3 steps:
- *
- * 1. If fewer than corePoolSize threads are running, try to
- * start a new thread with the given command as its first
- * task. The call to addWorker atomically checks runState and
- * workerCount, and so prevents false alarms that would add
- * threads when it shouldn’t, by returning false.
- *
- * 2. If a task can be successfully queued, then we still need
- * to double-check whether we should have added a thread
- * (because existing ones died since last checking) or that
- * the pool shut down since entry into this method. So we
- * recheck state and if necessary roll back the enqueuing if
- * stopped, or start a new thread if there are none.
- *
- * 3. If we cannot queue task, then we try to add a new
- * thread. If it fails, we know we are shut down or saturated
- * and so reject the task.
- */
- int c = ctl.get();
- if (workerCountOf(c) < corePoolSize) {
- if (addWorker(command, true))
- return;
- c = ctl.get();
- }
- if (isRunning(c) && workQueue.offer(command)) {
- int recheck = ctl.get();
- if (! isRunning(recheck) && remove(command))
- reject(command);
- else if (workerCountOf(recheck) == 0)
- addWorker(null, false);
- }
- else if (!addWorker(command, false))
- reject(command);
- }
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
注意:41以后提交的任务就不能正常处理了,因为,execute中提交到任务队列是用的offer方法,如上面代码,这个方法是非阻塞的,所以就会交给CustomRejectedExecutionHandler 来处理,所以对于大数据量的任务来说,这种线程池,如果不设置队列长度会OOM,设置队列长度,会有任务得不到处理,接下来我们构建一个阻塞的自定义线程池
五、定制属于自己的阻塞线程池
- package com.tongbanjie.trade.test.commons;
- import java.util.concurrent.ArrayBlockingQueue;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.RejectedExecutionHandler;
- import java.util.concurrent.ThreadFactory;
- import java.util.concurrent.ThreadPoolExecutor;
- import java.util.concurrent.TimeUnit;
- import java.util.concurrent.atomic.AtomicInteger;
- public class CustomThreadPoolExecutor {
- private ThreadPoolExecutor pool = null;
- /**
- * 线程池初始化方法
- *
- * corePoolSize 核心线程池大小—-1
- * maximumPoolSize 最大线程池大小—-3
- * keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间—-30+单位TimeUnit
- * TimeUnit keepAliveTime时间单位—-TimeUnit.MINUTES
- * workQueue 阻塞队列—-new ArrayBlockingQueue<Runnable>(5)====5容量的阻塞队列
- * threadFactory 新建线程工厂—-new CustomThreadFactory()====定制的线程工厂
- * rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
- * 即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
- * 任务会交给RejectedExecutionHandler来处理
- */
- public void init() {
- pool = new ThreadPoolExecutor(
- 1,
- 3,
- 30,
- TimeUnit.MINUTES,
- new ArrayBlockingQueue<Runnable>(5),
- new CustomThreadFactory(),
- new CustomRejectedExecutionHandler());
- }
- public void destory() {
- if(pool != null) {
- pool.shutdownNow();
- }
- }
- public ExecutorService getCustomThreadPoolExecutor() {
- return this.pool;
- }
- private class CustomThreadFactory implements ThreadFactory {
- private AtomicInteger count = new AtomicInteger(0);
- @Override
- public Thread newThread(Runnable r) {
- Thread t = new Thread(r);
- String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
- System.out.println(threadName);
- t.setName(threadName);
- return t;
- }
- }
- private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
- @Override
- public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
- try {
- // 核心改造点,由blockingqueue的offer改成put阻塞方法
- executor.getQueue().put(r);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- }
- // 测试构造的线程池
- public static void main(String[] args) {
- CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
- // 1.初始化
- exec.init();
- ExecutorService pool = exec.getCustomThreadPoolExecutor();
- for(int i=1; i<100; i++) {
- System.out.println(”提交第” + i + “个任务!”);
- pool.execute(new Runnable() {
- @Override
- public void run() {
- try {
- System.out.println(”>>>task is running=====”);
- TimeUnit.SECONDS.sleep(10);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- });
- }
- // 2.销毁—-此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
- // exec.destory();
- try {
- Thread.sleep(10000);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- }
- }
package com.tongbanjie.trade.test.commons;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class CustomThreadPoolExecutor {
private ThreadPoolExecutor pool = null;
/**
* 线程池初始化方法
*
* corePoolSize 核心线程池大小----1
* maximumPoolSize 最大线程池大小----3
* keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit
* TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES
* workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(5)====5容量的阻塞队列
* threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂
* rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
* 即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
* 任务会交给RejectedExecutionHandler来处理
*/
public void init() {
pool = new ThreadPoolExecutor(
1,
3,
30,
TimeUnit.MINUTES,
new ArrayBlockingQueue<Runnable>(5),
new CustomThreadFactory(),
new CustomRejectedExecutionHandler());
}
public void destory() {
if(pool != null) {
pool.shutdownNow();
}
}
public ExecutorService getCustomThreadPoolExecutor() {
return this.pool;
}
private class CustomThreadFactory implements ThreadFactory {
private AtomicInteger count = new AtomicInteger(0);
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
System.out.println(threadName);
t.setName(threadName);
return t;
}
}
private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
try {
// 核心改造点,由blockingqueue的offer改成put阻塞方法
executor.getQueue().put(r);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
// 测试构造的线程池
public static void main(String[] args) {
CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
// 1.初始化
exec.init();
ExecutorService pool = exec.getCustomThreadPoolExecutor();
for(int i=1; i<100; i++) {
System.out.println("提交第" + i + "个任务!");
pool.execute(new Runnable() {
@Override
public void run() {
try {
System.out.println(">>>task is running=====");
TimeUnit.SECONDS.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
}
// 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
// exec.destory();
try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
解释:当提交任务被拒绝时,进入拒绝机制,我们实现拒绝方法,把任务重新用阻塞提交方法put提交,实现阻塞提交任务功能,防止队列过大,OOM,提交被拒绝方法在下面
- public void execute(Runnable command) {
- if (command == null)
- throw new NullPointerException();
- int c = ctl.get();
- if (workerCountOf(c) < corePoolSize) {
- if (addWorker(command, true))
- return;
- c = ctl.get();
- }
- if (isRunning(c) && workQueue.offer(command)) {
- int recheck = ctl.get();
- if (! isRunning(recheck) && remove(command))
- reject(command);
- else if (workerCountOf(recheck) == 0)
- addWorker(null, false);
- }
- else if (!addWorker(command, false))
- // 进入拒绝机制, 我们把runnable任务拿出来,重新用阻塞操作put,来实现提交阻塞功能
- reject(command);
- }
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
// 进入拒绝机制, 我们把runnable任务拿出来,重新用阻塞操作put,来实现提交阻塞功能
reject(command);
}
总结:
1、用ThreadPoolExecutor自定义线程池,看线程是的用途,如果任务量不大,可以用无界队列,如果任务量非常大,要用有界队列,防止OOM
2、如果任务量很大,还要求每个任务都处理成功,要对提交的任务进行阻塞提交,重写拒绝机制,改为阻塞提交。保证不抛弃一个任务
3、最大线程数一般设为2N+1最好,N是CPU核数
4、核心线程数,看应用,如果是任务,一天跑一次,设置为0,合适,因为跑完就停掉了,如果是常用线程池,看任务量,是保留一个核心还是几个核心线程数
5、如果要获取任务执行结果,用CompletionService,但是注意,获取任务的结果的要重新开一个线程获取,如果在主线程获取,就要等任务都提交后才获取,就会阻塞大量任务结果,队列过大OOM,所以最好异步开个线程获取结果