试题 E: 矩阵
本题总分:15 分
【问题描述】
把 1 ∼ 2020 放在 2 × 1010 的矩阵里。要求同一行中右边的比左边大,同一
列中下边的比上边的大。一共有多少种方案?
答案很大,你只需要给出方案数除以 2020 的余数即可。
【答案提交】
这是一道结果填空题,你只需要算出结果后提交即可。本题的结果为一个
整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
————————————————
题解:
此题dfs不易得出,我们可以采用动态规划的思路完成。
我们设dp[i][j] 为上面一行有i个数,下面一行有j个数时所具有的方案数。
因此不难得出:
if(i-1>=j)
dp[i][j] += dp[i-1][j];
即一旦此时上面一行的数的数量大于下面一行时,我们才可以将其往下填。不然满足不了题意,因为数字的大小有限制且不重复。
另外对于dp[i][j]来说其也必定能够为上一个数的往右填,因此不论上面条件是否满足,我们每次都应该有;
dp[i][j] += dp[i][j-1];
因此总结得到我们每次都应该有dp[i][j] += dp[i][j-1];
而只有当i-1>=j,我们才能再额外的进行dp[i][j] += dp[i-1][j]操作。
即dp[i][j]此时等于上方有i个数,下方有j-1个数的方法数量加上上方有i-1个数,下方有j个数时的方法数量。

最低0.47元/天 解锁文章
1023

被折叠的 条评论
为什么被折叠?



