带你手搓一个AI Agent,如何本地部署AI智能体平台?收藏这一篇就够!

在这里插入图片描述

今天分享如何在个人电脑上搭建一个AI智能体平台,可以自定义聊天机器人,设计智能体,编排工作流,知识库,RAG管道等等,还支持本地大模型接入,并对外提供API接口。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

如搭建过程有疑问,可查看下方视频号详细讲解视频,也可在公众号主页添加我或进技术群交流。

为什么需要智能体

智能体的必要性源于单一AI模型的局限性。无论是GPT还是其他先进的AI模型,它们在处理复杂问题时总会面临边界。当多个智能体协同工作时,不同模型的优势可以相互补充,形成更具灵活性和智能化的系统。智能体不仅封装了提示词和任务,还能通过多个模型编排突破单个模型的局限,通过分工协作共同解决复杂问题。

多个大模型厂商已经开始推出基于智能体的AI助手,能够集成多个模型的优势来提供更具定制化和深度的服务。最近360与国内15家大模型开发商合作搞出一个”复仇者联盟“,推出的「360 AI助手」也是同样的道理,一个打不过GPT,15个一起上!

重点:Agent真正的价值在于——模型编排(也叫智能体设计Agent Design,现在有一个专业岗位叫Agent Designer)

01

开源LLM应用开发平台

AI Agent–Dify

Dify,源自 Define + Modify,意指定义且持续改进你的 AI 应用,它是为你而做的(Do it for you)。

它融入后端服务, 内置构建 LLM 应用所需的关键技术栈,支持数百个模型、Prompt 编排及流程编排、高质量RAG 引擎、Agent 框架,还提供了一套易用的界面和 API。为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。即使你是非技术人员,也可以快速搭建生产级的生成式 AI 应用。

Dify核心功能比较

1. 工作流: 在画布上自由构建和测试功能强大的 AI 工作流程。

2. 全面的模型支持: 与数百种闭源/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Llama3 以及Ollama平台。

3. Prompt IDE: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能的直观界面。

4. RAG 管道: 从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他文档格式中提取文本。

5. Agent 智能体: 可基于 LLM 定义 Agent,并为 Agent 添加自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DALL·E、Stable Diffusion。

6. LLMOps: 随时间监视和分析应用程序日志和性能。

7. 后端即服务: Dify功能带有相应的 API,可以将 Dify 集成到自己的业务应用中。

Dify能做什么

1. 创业:可快速将 AI 应用创意变成现实,已有几十个团队通过 Dify 构建 MVP(最小可用产品)获得投资,或通过 POC(概念验证)赢得了客户的订单。

2. 将 LLM 集成至已有业务:引入 LLM 增强现有应用的能力,接入 Dify 的 RESTful API 从而实现 Prompt 与业务代码的解耦,在 Dify 的管理界面是跟踪数据、成本和用量,持续改进应用效果。

3.作为企业级 LLM 基础设施:部分银行和互联网大厂正将 Dify 部署为企业内的 LLM 网关,加速 GenAI 技术在企业内的推广,并实现中心化的监管。

02

如何部署Dify

1.安装Docker

Docker 是一个小白就能轻松上手的开源容器平台,专为开发、部署和运行应用程序而设计。Docker 提供了一种轻量级的虚拟化方式,使得应用程序能够快速部署且易于管理。

1.1 Docker下载

官网:docker.com/products

支持Mac\Windows\Linux,选择适合的版本。

1.2 Docker安装

一键安装docker。

安装成功后docker的 UI 界面,如下:

2.部署 Dify

2.1 获取Dify源代码

有两种方式,都很简单。

一是通过Git命令行克隆,只需要一条命令自动拉取。

  1. 打开Git bash
  2. 输入命令:

git clone https://github.com/langgenius/dify

二是在GitHub 下载源码,放到指定文件夹即可。

  1. 访问 https://github.com/langgenius/dify
  2. 点击"Code",选择"Download ZIP"

2.2 解压文件

2.3 启动Dify

解压后打开docker文件夹,找到这个文件”docker-compose.yaml“,使用Git Bash打开。

同样也是一条简单命令拉取,很快就完成了。

运行命令:docker compose up -d

然后我们就能在Docker界面看到出项一栏Docker,那Dify就部署成功了。

3.打开Dify,配置账户信息

Dify本地部署完成后,需要从本地网址登录。

本地网址:http://127.0.0.1/apps

配置账户信息

然后就可以正式登录了。

4.Dify界面

主界面介绍

可用大模型管理:

Dify有很多强大的功能等着我们一起探索。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,用户想了解如何使用FastGPT快速搭建AI Agent。首先,我需要回顾一下用户提供的引用内容,确保回答准确。引用[4]提到FastGPT是基于LLM的知识库问答系统,支持工作流编排。引用[3]提到了ollama、qwen2.5-0.5b模型和配置FastGPT模型的步骤。引用[2]介绍了Docker部署和知识库向量化的方法。引用[1]则提供了FastGPT的仓库地址和创建知识库应用的步骤。 接下来,我需要将这些信息整合成一个清晰的步骤指南。首先应该介绍FastGPT的基本概念,然后分步骤说明部署方法、模型配置、知识库构建、工作流编排和代理测试。同时,要确保每个步骤都包含必要的细节,比如Docker命令、模型配置界面、数据导入方法等,并且自然插入引用标记。 用户可能希望教程简明实用,所以需要避免过于技术化的术语,但又要足详细以便跟随操作。还需要检查是否有遗漏的步骤,比如环境准备或模型选择。另外,用户可能对私有化部署和模型集成特别感兴趣,因为引用中提到了本地私有AI大模型,所以需要强调这部分内容。 最后,生成相关问题时要围绕FastGPT的应用场景、优化方法、私有化部署和模型选择等方面,确保问题对用户有进一步帮助。同时,要确认所有引用正确对应,例如引用[3]提到的配置模型步骤应在相应部分提到。 现在,整理结构,确保每个部分逻辑连贯,引用正确,并且语言自然流畅。</think>### 如何使用FastGPT快速搭建AI Agent? #### 1. **环境准备与部署** - **私有化部署**:推荐使用Docker快速部署FastGPT。例如,在Mac系统下可通过以下命令拉取镜像并启动服务[^2]: ```bash docker run -d --name fastgpt -p 3000:3000 -v /path/to/data:/app/data labring/fastgpt:latest ``` - **模型集成**:若需本地私有模型(如qwen2.5-0.5b),可通过ollama或oneAPI配置模型服务,并在FastGPT的模型管理界面添加API地址和令牌[^3]。 #### 2. **知识库构建** - **数据导入**:在FastGPT控制台创建知识库,支持上传TXT、PDF等文件或动添加文本。系统会自动将内容向量化存储,便于后续语义检索[^4]。 - **向量引擎配置**:默认使用M3E等开源模型进行向量化,也可替换为私有化部署的向量引擎(如Hugging Face模型)[^3]。 #### 3. **工作流编排(Flow)** - **可视化设计**:通过FastGPT的Flow界面拖拽节点,构建问答逻辑。例如: 1. **用户输入**节点接收问题。 2. **知识库检索**节点匹配相关内容。 3. **大模型推理**节点(如qwen2.5-coder)生成最终回答[^3]。 - **复杂场景支持**:可添加条件分支、API调用等节点,实现多步骤交互(如数据查询+计算+格式化输出)[^4]。 #### 4. **代理测试与优化** - **模拟测试**:在FastGPT的调试界面输入问题,观察工作流执行路径和结果。 - **性能调优**:根据日志调整检索阈值、模型温度(temperature)等参数,平衡回答准确性与多样性[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值