【Flink实战系列】Flink SQL 实时同步数据到 Hive

本文详细介绍了如何使用 Apache Flink SQL 实时同步数据到 Hive,探讨了环境配置、所需依赖、代码实现、任务提交、Flink UI 监控以及在 Hive 中验证数据的过程,展示了Flink作为实时数据仓库处理引擎的优势。
摘要由CSDN通过智能技术生成

通过 HiveCatalog, Apache Flink 可以对 Apache Hive Tables 进行统一的 BATCH 和 STREAM 处理。这意味着Flink 可以作为一个比 Hive 的批处理引擎性能更好的选择,或者可以连续地在 Hive 表中读写数据,从而支持实时数据仓库应用程序。这篇文章就来介绍一下使用 Flink SQL 实时同步数据到 Hive 的流程。

环境

flink: 1.15.0
hadoop: 2.9.0
hive: 2.3.4

依赖

<dependency>
            <groupId>org.apache.flink</groupId
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JasonLee实时计算

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值