# Chopsticks ——dp（好题！）

In China, people use a pair of chopsticks to get food on the table, but Mr. L is a bit different. He uses
a set of three chopsticks – one pair, plus an EXTRA long chopstick to get some big food by piercing
it through the food. As you may guess, the length of the two shorter chopsticks should be as close as
possible, but the length of the extra one is not important, as long as it’s the longest. To make things
clearer, for the set of chopsticks with lengths A, B, C (A ≤ B ≤ C), (A − B)
2
of the set.
It’s December 2nd, Mr.L’s birthday! He invited K people to join his birthday party, and would like
to introduce his way of using chopsticks. So, he should prepare K + 8 sets of chopsticks(for himself,
his wife, his little son, little daughter, his mother, father, mother-in-law, father-in-law, and K other
guests). But Mr.L suddenly discovered that his chopsticks are of quite different lengths! He should find
a way of composing the K + 8 sets, so that the total badness of all the sets is minimized.
Input
The first line in the input contains a single integer T, indicating the number of test cases (1 ≤ T ≤ 20).
Each test case begins with two integers K, N (0 ≤ K ≤ 1000, 3K + 24 ≤ N ≤ 5000), the number of
guests and the number of chopsticks.
There are N positive integers Li on the next line in non–decreasing order indicating the lengths of
the chopsticks (1 ≤ Li ≤ 32000).
Output
For each test case in the input, print a line containing the minimal total badness of all the sets.
Note: For the sample input, a possible collection of the 9 sets is:
8,10,16; 19,22,27; 61,63,75; 71,72,88; 81,81,84; 96,98,103; 128,129,148; 134,134,139; 157,157,160
Sample Input
1
1 40
1 8 10 16 19 22 27 33 36 40 47 52 56 61 63 71 72 75 81 81 84 88 96 98
103 110 113 118 124 128 129 134 134 139 148 157 157 160 162 164
Sample Output

23

dp【i】【j】表示第i组，搜到了第j根筷子

#include<bits/stdc++.h>
using namespace std;
int k,n;
int a[6000];
int dp[1200][6000];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&k,&n);
k=k+8;
for(int i=1;i<=n;i++){
scanf("%d",&a[n-i+1]);//注意这里让它降序存储，方便代码
}
memset(dp,0x3f3f3f3f,sizeof(dp));
for(int i=1;i<=n;i++){
dp[0][i]=0;
}
for(int i=1;i<=k;i++){
for(int j=i*3;j<=n;j++){
dp[i][j]=min(dp[i][j-1],dp[i-1][j-2]+(a[j]-a[j-1])*(a[j]-a[j-1]));//因为j只能跟j-1配对
            }
}
cout<<dp[k][n]<<endl;
}
}


#include<bits/stdc++.h>
using namespace std;
const int maxx=0x3f3f3f3f;
int t;
int k,n;
int a[6000];
int dp[6000][1200];//有i个人j双筷子时的最小值
int main()
{
scanf("%d",&t);
while(t--){
scanf("%d%d",&k,&n);
k=k+8;//多少组
memset(dp,maxx,sizeof(dp));
//cout<<dp[0][0]<<"*(*(*("<<endl;
dp[0][0]=0;
for(int i=1;i<=n;i++){
dp[i][0]=0;//第0组取到了第i位
}
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=n-2;i>=1;i--)
for(int j=k;j>=1;j--){
dp[i][j]=dp[i+1][j];//取到了i筷子
if(dp[i+2][j-1]!=maxx&&  n-i+1>=j*3)
//这个地方n-i-1是已经搜到i位置，因为是从n开始找的，所以这时候已经有n-i-1这些了只要大于已经匹配好的组数*3就说明肯定有一根是max存在。。。因为要最小，肯定有两个是相邻的。
{
dp[i][j]=min(dp[i][j],dp[i+2][j-1]+(a[i]-a[i+1])*(a[i]-a[i+1]));
//cout<<"i:"<<i<<"  j:"<<j<<"  "<<dp[i][j]<<"****"<<endl;
}
}
}
cout<<dp[1][k]<<endl;
}
return 0;
}

ps:感觉第一种代码比较好理解。

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120