运算符 左移<<, 右移>>, 无符号右移>>>

 1、 左移运算符<<

  左移运算符<<使指定值的所有位都左移指定的次数。

  1)通用格式

  value << num
  num 指定要移位值value 移动的位数。
  左移的规则只记住一点:丢弃最高位,0补最低位
  如果移动的位数超过了该类型的最大位数,那么编译器会对移动的位数取模。如对int型移动33位,实际上只移动了33%32=1位。

  2)运算规则

  按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。
  当左移的运算数是int 类型时,每移动1位它的第31位就要被移出并且丢弃;
  当左移的运算数是long 类型时,每移动1位它的第63位就要被移出并且丢弃。
  当左移的运算数是byte 和short类型时,将自动把这些类型扩大为 int 型。

  3)数学意义

  左移运算符<<使指定值的所有位都左移规定的次数。

 2、 右移运算符>>

  右移运算符<<使指定值的所有位都右移指定的次数。

  1)通用格式

  value >> num
  num 指定要移位值value 移动的位数。
  右移的规则只记住一点:符号位不变,左边补上符号位

  2)运算规则

  按二进制形式把所有的数字向右移动对应的位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1
  当右移的运算数是byte 和short类型时,将自动把这些类型扩大为 int 型。
  例如,如果要移走的值为负数,每一次右移都在左边补1,如果要移走的值为正数,每一次右移都在左边补0,这叫做符号位扩展(保留符号位)(sign extension ),在进行右移
  操作时用来保持负数的符号。

  3)数学意义

  右移一位相当于除2,右移n位相当于除以2的n次方。

  3、无符号右移>>>

  1) 通用格式

  value >>> num
  num 指定要移位值value 移动的位数。

     2) 运算规则

  无符号右移的规则只记住一点:忽略了符号位扩展,0补最高位
  无符号右移运算符>>> 只是对32位和64位的值有意义

==================================我是分割线===============================================================

下面是写的一组测试:


<span style="font-size:14px;">	@Test
	public void test(){
		//左移<<规则:移除的高位丢弃,低位补0 , 左移n位就相当于在原来值的基础上乘以2的n次方
		short v1 = -3;
		//原码:1000 0000 0000 0000 0000 0000 0000 0011
		//取反~
		//反码:1111 1111 1111 1111 1111 1111 1111 1100   
		//加1
		//补码:1111 1111 1111 1111 1111 1111 1111 1101
		//左移3位后
		//补码:1111 1111 1111 1111 1111 1111 1110 1000
		//减1
		//反码:1111 1111 1111 1111 1111 1111 1110 0111
		//取反
		//原码:1000 0000 0000 0000 0000 0000 0001 1000 ->值:-24
		Assert.assertTrue(v1<<3 == -24);
		
		short v2 = 3;
		//正数原码,反码,补码相同
		//原码: 0000 0000 0000 0000 0000 0000 0000 0011 
		//反码: 0000 0000 0000 0000 0000 0000 0000 0011
		//补码: 0000 0000 0000 0000 0000 0000 0000 0011
		//补码: 0000 0000 0000 0000 0000 0000 0001 1000 
		//反码: 0000 0000 0000 0000 0000 0000 0001 1000
		//原码: 0000 0000 0000 0000 0000 0000 0001 1000 ->值:24
		Assert.assertTrue(v2<<3 == 24);
		
		short v3 = -100;
		//原码: 1000 0000 0000 0000 0000 0000 0110 0100 
		//取反~
		//反码: 1111 1111 1111 1111 1111 1111 1001 1011
		//加1
		//补码: 1111 1111 1111 1111 1111 1111 1001 1100
		//左移3位后
		//补码: 1111 1111 1111 1111 1111 1100 1110 0000
		//减1:
		//反码: 1111 1111 1111 1111 1111 1100 1101 1111
		//取反~
		//原码: 1000 0000 0000 0000 0000 0011 0010 0000 ->值:-800
		Assert.assertTrue(v3<<3 == -800);
		
		//右移>>规则:移除的低位丢弃,高位根据原符号位补相应的值,如原为负值,符号位为1,则补1,否则补0 
		//-3
		//原码:1000 0000 0000 0000 0000 0000 0000 0011
		//取反~
		//反码:1111 1111 1111 1111 1111 1111 1111 1100   
		//加1
		//补码:1111 1111 1111 1111 1111 1111 1111 1101
		//右移3位,高位补1
		//补码:1111 1111 1111 1111 1111 1111 1111 1111
		//减1
		//反码:1111 1111 1111 1111 1111 1111 1111 1110
		//取反~
		//原码:1000 0000 0000 0000 0000 0000 0000 0001 ->值:-1
		Assert.assertTrue(v1>>3 == -1);
		
		//3
		//正数原码,反码,补码相同
		//原码: 0000 0000 0000 0000 0000 0000 0000 0011 
		//反码: 0000 0000 0000 0000 0000 0000 0000 0011
		//补码: 0000 0000 0000 0000 0000 0000 0000 0011
		//右移3位,高位补0
		//补码: 0000 0000 0000 0000 0000 0000 0000 0000 
		//反码: 0000 0000 0000 0000 0000 0000 0000 0000  
		//原码: 0000 0000 0000 0000 0000 0000 0000 0000 ->值:0
		Assert.assertTrue(v2>>3 == 0);
		
		//-100
		//原码: 1000 0000 0000 0000 0000 0000 0110 0100 
		//反码: 1111 1111 1111 1111 1111 1111 1001 1011 
		//补码: 1111 1111 1111 1111 1111 1111 1001 1100
		//左移3位,高位补1
		//补码: 1111 1111 1111 1111 1111 1111 1111 0011  
		//反码: 1111 1111 1111 1111 1111 1111 1111 0010
		//原码: 1000 0000 0000 0000 0000 0000 0000 1101 ->值:-13
		Assert.assertTrue(v3>>3 == -13);
		
		//右移>>>规则:移除的低位丢弃,高位补0 
		//-3
		//原码:1000 0000 0000 0000 0000 0000 0000 0011
		//取反~
		//反码:1111 1111 1111 1111 1111 1111 1111 1100   
		//加1
		//补码:1111 1111 1111 1111 1111 1111 1111 1101
		//右移3位,高位补0
		//补码:0001 1111 1111 1111 1111 1111 1111 1111
		//符号位为0,则表正数,补码和反码相同
		//反码:0001 1111 1111 1111 1111 1111 1111 1111
		//符号位为0,则表正数,原码和反码相同
		//原码:0001 1111 1111 1111 1111 1111 1111 1111 ->值:536870911
		Assert.assertTrue(v1>>>3 == 536870911);
		
		//3
		//原码: 0000 0000 0000 0000 0000 0000 0000 0011 
		//反码: 0000 0000 0000 0000 0000 0000 0000 0011
		//补码: 0000 0000 0000 0000 0000 0000 0000 0011
		//右移3位,高位补0
		//补码: 0000 0000 0000 0000 0000 0000 0000 0000 
		//反码: 0000 0000 0000 0000 0000 0000 0000 0000  
		//原码: 0000 0000 0000 0000 0000 0000 0000 0000 ->值:0
		Assert.assertTrue(v2>>>3 == 0);
		
		//-100
		//原码: 1000 0000 0000 0000 0000 0000 0110 0100 
		//反码: 1111 1111 1111 1111 1111 1111 1001 1011 
		//补码: 1111 1111 1111 1111 1111 1111 1001 1100
		//左移3位,高位补0
		//补码: 0001 1111 1111 1111 1111 1111 1111 0011  
		//符号位为0,则表正数,补码和反码相同
		//反码: 0001 1111 1111 1111 1111 1111 1111 0011
		//符号位为0,则表正数,原码和反码相同
		//原码: 0001 1111 1111 1111 1111 1111 1111 0011 ->值:536870899
		Assert.assertTrue(v3>>>3 == 536870899);
	}</span>


在编程领域,特别是针对二进制操作,有几种特殊的赋值运算符可以帮助高效地更改整数值的特定位元。这几种特殊赋值运算符包括左移赋值 (`<<=`),右移赋值 (`>>=`),位逻辑与赋值 (`&=`),位逻辑或赋值 (`|=`),以及位逻辑异或赋值 (`^=`)。以下是每种运算符的解释及其功能描述: ### 左移赋值 (`<<=`) 左移赋值操作符将一个数的所有位向左移动指定的数量位。高位会被丢弃,并由低位填充。通常情况下,对于负数,低位会填上符号位(正数则默认为0)。这个过程相当于乘以 \(2^n\),其中n是你移动的位数。 **示例**: ```python x = 2 # 原始二进制: 0010 (base-2) x <<= 2 # x 现在变为 8 (base-10), 相当于原数乘以4 # x 的二进制表示现在是 1000 ``` ### 右移赋值 (`>>=`) 右移赋值操作符将一个数的所有位向右移动指定的数量位。低位会被丢弃,并由符号位填充。这意味着对于负数,左边的新位会填充原有的符号位,保持其负数状态。 **示例**: ```python y = -10 # 假设二进制表示为补码形式,具体取决于具体的位宽 y >>= 2 # y 现在变为大约 -2.5 (对于大多数系统来说),实际上取决于系统位宽和补码表示规则 # 对于一个8位系统,y的二进制可能是全1s,代表-1 ``` ### 位逻辑与赋值 (`&=`) 位逻辑与赋值运算符取两个数在对应位元上的逻辑与,然后把结果赋予第一个数。这意味着只有当两个数在同一位置都有1的时候,新值的这一位才会是1。 **示例**: ```python z = 5 # 原始二进制: 0101 (base-2) z &= 3 # z 现在变为 1 (base-10) # z 的二进制表示现在是 0001 ``` ### 位逻辑或赋值 (`|=`) 位逻辑或赋值运算符取两个数在对应位元上的逻辑或,然后把结果赋予第一个数。这意味着只要有任意一方在这一定位上有1,新值的这一位就会是1。 **示例**: ```python w = 1 # 原始二进制: 0001 (base-2) w |= 5 # w 现在变为 5 (base-10) # w 的二进制表示现在是 0101 ``` ### 位逻辑异或赋值 (`^=`) 位逻辑异或赋值运算符取两个数在对应位元上的逻辑异或,然后把结果赋予第一个数。这意味着如果有且仅有一个数在这一定位上有1,则新值的这一位才会是1。 **示例**: ```python a = 4 # 原始二进制: 0100 (base-2) a ^= 3 # a 现在变为 7 (base-10) # a 的二进制表示现在是 0111 ``` 以上就是这五种特殊赋值运算符的基本概述及用法例子。它们在优化算法、资源管理、位操作等方面有着广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>