spark streaming 同时处理两个不同kafka集群的数据

如题,总是不那么完美,要处理的数据在两个不同的kafka集群里面,日子得过,问题也得解决,我们创建两个DStream,连接两个不同的kafka集群的不同topic,然后再把这两个DStream union在一起处理,代码如下:

package com.kingnet

import java.util

import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.joda.time.DateTime
import org.joda.time.format.DateTimeFormat

import scala.collection.JavaConversions._

/** *
  *
  */
object IOSChannelNewActiveDids {

  def createContext(params: KafkaStreamingParams) = {

    //   {"batchTime":5,"sources":[{"zookeeper":"name85:2181,name86:2181,name87:2181","group":"group1","topics":"test1","numThreads":"1"},{"zookeeper":"name85:2181,name86:2181,name87:2181","group":"group1","topics":"test2","numThreads":"
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值