一文大白话讲清楚webpack基本使用——17——Tree Shaking

一文大白话讲清楚webpack基本使用——17——Tree Shaking

1. 建议按文章顺序从头看,一看到底,豁然开朗

2. 啥叫Tree Shaking

  • Tree,就是树,Shaking就是摇,摇树,为啥要摇树,让我们想起一件事
  • 果农秋收的时候,发现树上的果实有点已经烂了,有的还新鲜着,果农就想,我把这个树上不好的果子都去掉,怎么去呢,大力摇树,因为坏了的果子根部不牢固了,稍微用力摇就能掉下来。
  • 经过一番摇动之后,剩下的果实就是我们需要的好果实了。
  • 这就是Tree Shaking。
  • 回到webpack中,Tree Shaking就是在构建的时候把无用的代码(死代码)去掉,只保留有用的代码,这样就能缩减构建包的体积

3. 什么是死代码,怎么来的

  • 啥是死代码,就是在程序运行的生命周期内(webpack认为的,不是全部的)始终不被执行的代码
  • 为啥始终得不到执行呢,这是因为在ES6模块出,我们通过export暴露外部接口,如果有些程序体既没有被暴露出去,内部有没有引用依赖,那么他讲永远无法被调用执行,这时,他就成了死代码
  • 比如我们在一个js文件里面写了两个方法,一个add,一个reduce
function add(x,y){
    return x+y
}
function reduce(x,y){
    return x-y
}
export{
    add
}
  • 我们通过export之暴露了add,没有暴露reduce,那么reduce将无法被执行,就成了死代码
  • 或者我们通过import导入了add 和reduce,但是只用了add,没用reduce,也是一样的
import {add ,reduce} from 'xxx'
add()
// recuce()//一直未使用,也是死代码
  • 可是,问题来了,为什么我们说这仅是webpack认为的死代码
  • 因为者设计一个概念,我们举个例子,你给我钱了,我没要;和你给我钱了,我没花;这两个最终的结果都是我没花你的钱,但是后者需要我用完钱了,我才能知道你到底花没花你的钱。而前者不一样,我一开始就知道我没花,因为我压根就没要你钱。
  • 放在程序里面,正常情况下,只有程序运行完了,我们才知道哪些代码没有被执行。之所以能提前知道有些代码不能被执行,是因为程序压根就没引入这些代码。为啥能知道呢,就是因为ES6模块没有暴露这个接口,这个事情,我们在编译的时候就能知道,不用等到运行时。
  • 这也是为什么webpack在构建时就可以识别出来有用和无用的代码

3. Tree Shaking的流程

3.1 标记

  • webpack会从入口文件出发,递归的分析代码中的模块依赖,标记处用到的模块和导出的函数和变量
  • 具体标记如下:
  1. 所有import标记为/* harmony import*/
  2. 所有用到的export标记为/* harmony export([type]) */其中type和webpack内部有关,可能值为binding,immutable等
  3. 没被使用过的import标记为/* unused harmony export [FunctionName] */ 其中FunctionName为export的方法名称

3.2 利用Terser摇起来

  • 通过Terser删除掉没有被用到的到导出语句

4. 具体使用方式

4.1 适用前提

  • 前面讲过了,Tree Shaking的适用前提是我们通过ES6模块实现接口暴露,而不能是CommonJS(我们之前就是这么写的,不要改)
  • 另外就是一般在production环境下,默认开启Tree Shaking
  • 配置optimization.usedExports:true
  • 最后,要配置JS代码压缩,因为Tree Shaking发生在代码压缩阶段(我们之前讲JS代码压缩,已经配置过了,不要改)

4.2 使用流程

  • 首先,我们修改mode为production
    在这里插入图片描述

  • 然后配置optimization.usedExports:true
    在这里插入图片描述

  • 为了验证TreeShaking是否生效,我们在src/modulejs/add.js里面新增一个addThird方法,函数体长一些,暴露
    在这里插入图片描述

  • 然后我们在main.js里面倒入addTHird,并使用
    在这里插入图片描述

  • 构建打包

npm run build
  • 看构建后bundle体积
    在这里插入图片描述
    91KB

  • 然后在main.js里面注销addTRhird的调用
    在这里插入图片描述

  • 可以看到在编辑器里面倒入的时候addTRhird变量变灰了,说明未使用

  • 然后重新构建打包

npm run build
  • 看看体积
    在这里插入图片描述
    90KB了,说明addTRhird没有被打包进来
  • 有人会问了,为啥不在打包的js里面查看一下是否打包了addTRhird方法,因为我们把代码压缩了,找起来比较麻烦,谢谢
  • ok ,摇完了

5. 副作用代码

  • 简单点,啥叫副作用,就是函数除了返回值还干了点别的
let a=0;
function add (x,y){
    a=2;
    return x+y
}
add(1,2)
  • add除了返回x+y,还修改了外部变量,所以他是副作用函数
  • 为啥要讲副作用,就是有些代码没用但是又不想删除
  • 明白没有,就是比如这个add函数可能我们最后在main.js没引用,构建的时候本该删除,但是删了他影响了a,所以我们要考虑一下要不要删
  • 如果不想删,我们可以指定配置,有副作用的代码的不删除

5.1 通过webpack.config.js中sideEffects指定

  • 在webpack.config.js里面配置sideEffects数组,数组元素是具有副作用的模块js
module.exports={
    sideEffects:['./xxx.js']
}

5.2 通过package.json中sideEffects配置

{
    sideEffects:true//所有导入文件都视为有副作用
    sideEfeects:false//都没有副作用
    sideEffects:['sss/jx']//指定哪些有副作用
}
卷积神经网络(CNN)是一种常用于图像处理和模式识别的深度学习模型。它的设计灵感来自于生物学中视觉皮层的神经元结构。为了用通俗的语言解释CNN,我们可以用以下方式来理解它: 假设你要识别一张猫的图片。首先,你的大脑会将这张图片的像素点转化成一系列数字,并且记录下它们的位置和颜色。然后,大脑会将这些数字输入到“卷积层”中。 在卷积层中,会有很多个“过滤器”。这些过滤器可以视为一双眼睛,它们通过抓取图片的不同特征来帮助你识别物体。每个过滤器都在图片上滑动并计算一个“特征图”,这个特征图描述了所检测到的特定特征。例如,一个过滤器可以检测到猫的边缘,另一个可以检测到猫的颜色等等。当所有过滤器完成计算后,就会得到一些不同的特征图。 在“池化层”中,每个特征图都会被压缩,去除一些不重要的信息。这样可以减少需要计算的数据量,并且使得特征更加鲁棒和不变形。 最后,在全连接层中,所有的特征图都被连接起来,形成一个巨大的向量。接下来,这个向量会通过一些神经元节点,最终输出识别结果,也就是“这是一张猫的图片”。 CNN的一个重要特点是参数共享,这意味着每个过滤器会在整个图片上进行计算,而不仅仅是某个局部区域。这样可以减少需要计算的参数量,提高训练速度和模型的泛化能力。 总结一下,CNN通过卷积层来提取图像的特征,并通过池化层降低特征的维度。最后,通过全连接层将所有特征连接起来并输出结果。这种结构使得CNN非常适合于图像分类和识别任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

16年上任的CTO

爱我就打我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值