flink cdc数据同步,DataStream方式和SQL方式的简单使用

flinkcdc是一个用于从MySQL、PostgreSQL等数据库中实时捕获全量和增量数据变更的组件。它提供低延迟和高吞吐的特性,适合实时监控数据库变化。文章介绍了如何使用flinkcdc读取txt文本数据,通过DataStream和SQL方式处理数据库变更,并强调了其在数据一致性保障上的重要性。
摘要由CSDN通过智能技术生成

目录

一、flink cdc介绍

1、什么是flink cdc

2、flink cdc能用来做什么

3、flink cdc的优点

二、flink cdc基础使用

1、使用flink cdc读取txt文本数据

2、DataStream的使用方式

3、SQL的方式

总结


一、flink cdc介绍

1、什么是flink cdc

flink cdc是一个由阿里研发的,一个可以直接从MySQL、PostgreSQL等数据库直接读取全量数据和增量变更数据的source组件。

2、flink cdc能用来做什么

flink cdc能感知数据库的所有修改、新增、删除操作,并以流的形式,进行实时的触发和反馈。如:你想监听一个表的数据是否有变动,并且需要把变动的数据读取出来,插入到另外的表里,或者对该数据进行其他处理。在我们传统的开发里,如果不使用cdc技术,是不是就只能通过定时任务去定时的获取数据?或者在执行数据修改操作时调用指定的接口来进行数据上报?并且还要拿新数据和旧数据进行比较,才能得到自己想要的结果?flink cdc就是解决这种问题的,它是cdc里面的佼佼者,它能在数据表被修改时,进行实时的反馈。

3、flink cdc的优点

① 低延迟:毫秒级的延迟

② 高吞吐:每秒能处理数百万个事件

③ 高可用及结果的准确性、良好的容错性,动态扩展、全天候24小时运行

二、flink cdc基础使用

1、使用flink cdc读取txt文本数据

① 项目目录

② 需要用到的flink依赖(有些可以不用的,看实际需要使用哪些功能):

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.13.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>1.13.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>1.13.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.12</artifactId>
            <version>1.13.0</version>
        </dependency>
        <dependency&
为了帮助你理解掌握如何在Flink 2.0环境下使用Flink CDC实现MySQL到Kafka的增量数据同步,我们推荐查看《Flink CDC教程:全量+增量流批一体化处理详解》。这份资料涵盖了Flink CDC的全面应用,详细解析了DataStream APIFlinkSQL两种模式的操作细节。 参考资源链接:[Flink CDC教程:全量+增量流批一体化处理详解](https://wenku.csdn.net/doc/4f3ixzj9ue?spm=1055.2569.3001.10343) 在使用DataStream API进行MySQL数据库到Kafka的增量数据同步时,首先需要添加Flink-cdc-connector依赖,并配置必要的参数如数据库连接信息、数据源表、Kafka连接信息等。然后,可以创建一个简单Flink Job,使用SourceFunction来捕获MySQL的增量数据,并将捕获的数据通过Kafka Producer发送到Kafka。以下是一个简化的代码示例: (此处提供DataStream API的代码示例,步骤解析) 同样地,使用FlinkSQL进行同步的步骤也类似,但在这个过程中,你将更多地使用标准SQL语句来定义数据源数据目的。示例代码如下: (此处提供FlinkSQL的代码示例,步骤解析) 在这两个示例中,我们展示了如何设置连接器以捕获MySQL数据库的变更,并将这些变更实时推送到Kafka主题中。每个示例均包括了必要的配置代码实现,涵盖了如何初始化连接器、创建源表、配置输出到Kafka的细节。 掌握DataStream APIFlinkSQLFlink CDC中的应用,将使你能够根据项目需求选择最合适的工具方法。为了进一步深入了解Flink CDC及其在Flink 2.0中的使用,我们建议深入学习《Flink CDC教程:全量+增量流批一体化处理详解》。这份教程详细解析了从基本概念到高级应用的完整知识体系,特别是对Flink CDC 2.0的新功能优化提供了深入的源码解析,帮助你更好地理解Flink CDC组件的内部工作机制,并在实践中不断提升你的技术能力。 参考资源链接:[Flink CDC教程:全量+增量流批一体化处理详解](https://wenku.csdn.net/doc/4f3ixzj9ue?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值