青瓜先生
码龄14年
关注
提问 私信
  • 博客:119,468
    社区:1
    119,469
    总访问量
  • 145
    原创
  • 31,419
    排名
  • 331
    粉丝
  • 12
    铁粉

个人简介:极简、授之以渔的解决方案

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2010-10-29
博客简介:

xiaoc100200的博客

查看详细资料
  • 原力等级
    当前等级
    4
    当前总分
    697
    当月
    19
个人成就
  • 获得233次点赞
  • 内容获得28次评论
  • 获得299次收藏
  • 代码片获得764次分享
创作历程
  • 74篇
    2024年
  • 3篇
    2023年
  • 18篇
    2022年
  • 8篇
    2021年
  • 42篇
    2020年
成就勋章
TA的专栏
  • 基础算法案例
    付费
    15篇
  • 机器人规划控制算法案例
    付费
    11篇
  • 人形机器人算法案例
    付费
    37篇
  • C++入门例子
    付费
    9篇
  • Flink入门实战系列
    15篇
  • 机器人之旅
    14篇
  • Linux常用命令
    8篇
  • 大数据
    7篇
  • Python
    16篇
  • scrapy爬虫
    6篇
  • 机器学习算法
    3篇
  • clickhouse 入门实战
    1篇
  • Scala
    4篇
  • elasticsearch7入门实战
    1篇
兴趣领域 设置
  • 前沿技术
    机器人
  • 开源
    github
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

对角两对双差速轮AGV的平移、直行、转弯和原地旋转之PID控制

本示例将展示如何使用PID控制算法,控制具有对角线布置的两对双差速轮(左前和右后)的AGV,实现平移、直行、转弯和原地旋转等运动。通过对车辆的运动学和PID控制器的设计,我们可以精确地控制AGV的运动
原创
发布博客 2024.10.27 ·
345 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

对角双差速轮AGV平移、直行、转弯、原地旋转案例

在对角两对双差速轮 AGV(自动导引车)中,车辆配置了两对差速轮,分别安装在左前(Front Left,FL)和右后(Rear Right,RR)。这种配置使得 AGV 具有较高的机动性,可以实现平移、直行、转弯和原地旋转等复杂运动
原创
发布博客 2024.10.27 ·
239 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

对角两对双差速轮AGV的运动学正解和逆解

对角双差速轮AGV是一种特殊的移动机器人结构,其中两个驱动轮位于车辆的对角线上,通常是前左(FL)和后右(RR)轮,另外两个轮子则是从动轮(万向轮或滑轮),如前右(FR)和后左(RL)轮。这种配置可以在某些特殊应用场景下使用,如需要特定的运动性能或结构设计限制。理解这种AGV的运动学正解(由轮速求车辆运动)和逆解(由期望运动求轮速)对于其设计和控制非常重要
原创
发布博客 2024.10.26 ·
271 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

对角两对双差速轮AGV的动力学解算

对角双差速轮AGV是一种特殊的移动机器人,其驱动轮位于对角线位置(通常为前左轮和后右轮),另外两个轮子为从动轮(通常为万向轮)。在前面的讨论中,我们介绍了该类型AGV的运动学模型。现在,我们将深入研究其动力学模型,以便更准确地描述车辆的运动行为,并为控制设计提供基础
原创
发布博客 2024.10.26 ·
452 阅读 ·
8 点赞 ·
0 评论 ·
0 收藏

前后前后两对双差速轮之LQR控制

通过在四轮AGV的代码中引入LQR控制,实现了对AGV的精确路径跟踪控制。LQR控制器能够根据当前状态和目标状态的误差,计算最优的控制输入,使AGV平稳地到达目标位置。
原创
发布博客 2024.10.26 ·
99 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

前后两对双差速轮之PID控制

将PID控制器引入到前后两对双差速轮AGV的运动控制中,可以提高AGV对目标速度和位置的响应能力,实现对期望轨迹的跟踪。
原创
发布博客 2024.10.26 ·
76 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

前后两对双差速轮AGV的运动学正解和逆解

具有前后两对双差速轮的AGV是一种常见的移动机器人结构,四个驱动轮分为前后两组,每组由左右两个独立驱动的车轮组成。相比于单组双差速轮,增加了一组驱动轮,可以提高AGV的承载能力和稳定性。理解其运动学正解(由轮速求车辆运动)和逆解(由期望运动求轮速)对于控制和导航具有重要意义。L:前后轮组之间的轴距(单位:米)W:左右轮之间的轮距(单位:米)运动学正解:根据四个车轮的角速度,计算车辆的线速度和角速度。关键在于计算左右轮组的平均线速度,进而得到车辆的角速度。
原创
发布博客 2024.10.26 ·
241 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

双差速轮之LQR控制

线性二次型调节器(LQR,Linear Quadratic Regulator)是一种最优控制方法,旨在通过最小化性能指标(通常是状态和控制输入的加权二次型)来确定系统的最佳控制输入。对于双差速轮AGV,使用LQR控制可以实现对其轨迹的精确跟踪和姿态控制。通过在代码中引入LQR控制器,实现了对双差速轮AGV的路径跟踪控制。LQR控制器通过最小化状态误差和控制输入,计算出最优的控制输入,使得AGV能够平稳、高效地到达目标位置。
原创
发布博客 2024.10.26 ·
504 阅读 ·
12 点赞 ·
0 评论 ·
0 收藏

PID控制原理

PID控制器是一种经典且广泛应用于工业控制领域的反馈控制器,它由比例(P)、积分(I)和微分(D)三个部分组成。通过对这三个部分的综合调节,PID控制器能够实现对被控对象的精确控制,使系统输出尽可能快速、准确地跟随设定值(目标值)。问题: 长时间的误差累积可能导致积分项过大,造成“积分饱和”,影响系统稳定性。调整PID控制器的三个增益参数 Kp、Ki、Kd对系统性能影响重大。在数字控制系统中,PID控制器需要以离散形式实现。问题: 微分项对高频噪声敏感,可能放大测量噪声。
原创
发布博客 2024.10.26 ·
314 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

双差速轮之PID控制

为了更加精确控制AGV运动,加入PID控制器,以控制左右轮的角速度,使AGV能够更加精确地跟踪期望的运动。代码中将包括PID控制器的实现,以及在主循环中如何使用PID控制器来调整轮子的角速度。
原创
发布博客 2024.10.26 ·
98 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

双差速轮AGV的运动学正解和逆解

双差速轮AGV(Automated Guided Vehicle)是一种常见的移动机器人结构,采用两侧独立驱动的车轮,通过控制左右轮的转速差实现运动和转向。理解其运动学正解(由轮速求车辆运动)和逆解(由期望运动求轮速)对于AGV的设计和控制至关重要。𝑣:AGV的线速度(质心速度),单位:米/秒(m/s)𝜔:AGV的角速度(绕质心的旋转速度),单位:弧度/秒(rad/s)𝑣L、𝑣R :左、右轮的线速度,单位:米/秒(m/s)𝜔L、𝜔R:左、右轮的角速度,单位:弧度/秒(rad/s)
原创
发布博客 2024.10.26 ·
580 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

C++ 进程间通信举例

上述示例展示了 C++ 中几种常见的进程间通信方法。管道(Pipe):适用于父子进程间的简单通信。消息队列(Message Queue):适用于需要消息优先级和复杂通信的场景。共享内存(Shared Memory):适用于需要快速数据交换的场景,但需要注意同步问题。信号(Signals):适用于异步事件通知。这些方法各有优缺点,可以根据具体需求进行选择和组合使用。
原创
发布博客 2024.07.07 ·
231 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

强化学习与控制模型结合例子

通过结合控制模型(如LQR)和强化学习算法(如DQN),我们可以利用控制模型提供的动态信息和稳定性保障,同时利用RL的学习能力优化控制策略。这种结合方法不仅提高了系统的鲁棒性,还加快了学习速度,适用于各种复杂的机器人控制任务。
原创
发布博客 2024.07.07 ·
629 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

dreamerV3 控制人形机器人行走举例

DreamerV3 是一种先进的强化学习算法,它结合了模型预测控制(MPC)和深度学习,能够在复杂环境中实现高效的学习和控制。DreamerV3 通过构建环境的动态模型并使用该模型进行多步预测和优化,来学习复杂任务如人形机器人行走
原创
发布博客 2024.07.06 ·
583 阅读 ·
18 点赞 ·
0 评论 ·
0 收藏

TD-MPC(Temporal Difference Model Predictive Control)人形机器人行走举例

基于TD-MPC的人形机器人行走任务通过结合时序差分学习和模型预测控制,可以实现对复杂物理系统的有效控制。通过构建动力学模型,进行多步预测和优化,并结合TD方法更新策略,可以大大提高学习效率和模型的准确性。这种方法在处理如人形机器人行走等复杂任务时,展示了其独特的优势和潜力。
原创
发布博客 2024.07.06 ·
321 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

模型强化学习人形机器人行走任务

动力学约束强化学习方法通过显式地将物理动力学模型引入学习过程,结合模型学习和优化来提高学习效率和模型的准确性。
原创
发布博客 2024.07.06 ·
514 阅读 ·
12 点赞 ·
0 评论 ·
0 收藏

贝尔曼方程人形机器人举例

贝尔曼方程(Bellman Equation)是强化学习中的核心方程,用于表示状态值函数和动作值函数之间的关系。通过贝尔曼方程,可以递归地计算状态或状态-动作对的价值。为了更好地理解贝尔曼方程在强化学习中的应用,下面我们以人形机器人行走任务为例进行讲解。
原创
发布博客 2024.07.06 ·
137 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

贝尔曼方程(Bellman Equation)

贝尔曼方程(Bellman Equation)是动态规划和强化学习中的核心概念,用于描述最优决策问题中的价值函数的递归关系。它为状态值函数和动作值函数提供了一个重要的递推公式,帮助我们计算每个状态或状态-动作对的预期回报。
原创
发布博客 2024.07.06 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

PPO控制人形机器人行走举例

PPO算法主要有两种变体:PPO-Clip 和 PPO-Penalty。这里主要介绍PPO-Clip,因为它更常用。继承HumanoidEnv并重写step方法。在step方法中,我们计算了原始的状态、奖励、终止标志和信息。forward_reward:机器人在x方向上的速度,鼓励机器人前进。control_cost:控制成本,惩罚动作幅度过大的行为。contact_cost:接触成本,惩罚机器人身体接触地面。
原创
发布博客 2024.07.06 ·
438 阅读 ·
6 点赞 ·
0 评论 ·
0 收藏

人形机器人强化学习控制分类

人形机器人(Humanoid Robot)的控制是机器人学中的一个重要研究方向,其中强化学习(Reinforcement Learning, RL)技术近年来得到了广泛的应用。
原创
发布博客 2024.07.06 ·
873 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏
加载更多