LIP模型动力学方程例子

本文介绍了线性倒立摆(LIP)模型在人形机器人步态控制中的应用,详细阐述了LIP模型的基本假设,并提供了一个使用CasADi库实现MPC控制LIP模型的代码示例,包括状态变量定义、动力学方程、离散化、优化问题构建以及结果展示。
摘要由CSDN通过智能技术生成

线性倒立摆(Linear Inverted Pendulum, LIP)模型是用于描述和控制人形机器人步态的重要工具。LIP模型假设质心沿着一条固定的直线运动,并且所有质量集中在质心上。这简化了计算,使得模型更容易用于控制和稳定分析。

LIP模型动力学方程

LIP模型的基本假设是:

  • 机器人的质心(Center of Mass, CoM)在一个固定的高度 z𝑐上移动。
  • 支撑面是水平的,且没有任何摩擦。
  • 所有的质量集中在质心上。
    LIP模型的动力学方程基于牛顿第二定律和力矩平衡,可以描述为:
    在这里插入图片描述
    其中:
  • x𝑐是质心在水平面上的位置。
  • ¨x𝑐是质心的水平加速度。
  • g 是重力加速度。
  • z𝑐是质心的高度。

示例代码

该示例展示了如何使用CasADi库来实现MPC控制倒立摆模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值