NMPC概述
非线性模型预测控制(Nonlinear Model Predictive Control, NMPC)是一种用于控制非线性系统的高级控制策略。与线性MPC不同,NMPC需要处理系统的非线性特性,这使得优化问题更加复杂。NMPC通常使用迭代优化算法来求解非线性优化问题
NMPC基本原理
NMPC的目标是最小化未来若干个时间步上的目标函数,同时满足系统的动态约束和操作约束。一般的NMPC优化问题可以表示为:

其中:
- x𝑘 是时间步 k 的系统状态。
- u𝑘 是时间步 k 的控制输入。
- f(x𝑘,u𝑘) 是系统的非线性动态方程。
- L(x𝑘 ,u𝑘) 是阶段成本函数。
- L f(x𝑁) 是终端成本函数。
- N 是预测时域的长度。
求解NMPC问题
求解NMPC问题通常使用迭代优化算法,如序列二次规划(Sequential Quadratic Programming, SQPÿ
非线性模型预测控制(NMPC)是一种针对非线性系统的控制策略,它利用迭代优化算法解决复杂的非线性优化问题。文章介绍了NMPC的基本原理,包括目标函数和约束条件,并通过一个使用CasADi库解决NMPC问题的Python示例进行详细阐述,该示例涉及非线性摆系统的控制。NMPC在机器人控制等领域有广泛应用。
订阅专栏 解锁全文
3627

被折叠的 条评论
为什么被折叠?



