序列二次规划(Sequential Quadratic Programming, SQP)
SQP是一种用于解决非线性优化问题的迭代方法。它通过将原始非线性优化问题分解为一系列的二次规划(Quadratic Programming, QP)子问题来近似求解。每个QP子问题在当前迭代点上构造并求解,以更新迭代点。
- SQP算法在解决非线性优化问题中的应用。算法通过不断构造和求解二次规划子问题,逐步逼近原始非线性优化问题的最优解
以下是SQP的基本原理:
非线性优化问题的形式
一般的非线性优化问题可以表示为:

QP子问题的构造
在每一步迭代中,SQP算法通过在当前点 xk处线性化约束条件,并构造一个近似目标函数的二次模型,形成一个QP子问题。QP子问题的形式如下:

订阅专栏 解锁全文
1242

被折叠的 条评论
为什么被折叠?



