DDP算法之线性化和二次近似(Linearization and Quadratic Approximation)

DDP算法线性化和二次近似

  • 在DDP算法中,第三步是线性化系统动力学方程和二次近似代价函数。这一步是关键,它使得DDP能够递归地处理非线性最优控制问题。通过线性化和二次近似,我们将复杂的非线性问题转换为一系列简单的线性二次问题,逐步逼近最优解。
  • 通过这些线性化和二次近似步骤,我们可以将原始的非线性问题简化为一系列线性二次调节问题,使得递归求解成为可能。这一步是DDP算法的核心,它使得DDP能够在非线性系统中高效地逼近最优解

系统动力学方程的线性化

对于给定的非线性系统动力学方程:
在这里插入图片描述
在每个时间步 k,我们对 f 进行泰勒展开,得到系统动力学方程的线性近似:
在这里插入图片描述
其中:
在这里插入图片描述<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值