Web分析工具概述
挑战
在竞争日益激烈的网络经济中,只有赢得用户才能最终赢得竞争的优势。作为一个网站,你知道用户都在你的网站上干什么吗?你知道你的网站哪些部分最为用户喜爱、哪些让用户感到厌烦?什么地方出了安全漏洞?什么样的改动带来了显著的用户满意度提高、什么样的改动反而丢失了用户?你怎样评价你的网站广告条的效率、你知道什么样的广告条点击率最高吗?“知己知彼,才能百战不殆”,你真的了解自己吗?
机会
所有客户行为的电子化(Click Stream),使得大量收集每个用户的每一个行为数据、深入研究客户行为成为可能。如何利用这个机会,从这些“无意义”的繁琐数据中得到大家都看得懂的、有价值的信息和知识是我们面临的问题。
我们能做什么
3.1 基本分析
流量分析
随时间的变化,网络流量怎样化?每一张网页、每一个目录、每一个内容模块的流量分配情况怎样。
广告分析
我们做的哪些广告给我们带来了最大的访问量?投资收益比是多少?我们自己网站上的广告又有多少点击率,什么位置上的广告点击率最高?
网站出入口分析
用户在哪里进入网站。每次都经过首页?还是通过搜索引擎直接进入感兴趣的页。用户在哪一页过后跳出了网站?有多少人是这样出去的?
访问路径分析
用户的访问路径都是什么样的?他们怎样进入某一特定内容?我们吸引用户进入一个特定目标的措施效果如何?
用户来源分析
我们最重要的用户都来自哪里?什么国家、地区,从哪个网站过来?那个ISP对我来说是最重要的,在来源上我们的用户有哪些特征?
浏览器和平台分析
用户都用什么样的浏览器、什么操作系统访问我的网站?在设计网站时具体要做哪些权衡和优化。
3.2 智能分析(数据挖掘)
网页相关性分析
哪些网页具有密切的关系,如果很多人具有a.htmlà b.htmlà c.html这样的访问模式,则我们可以认定a.html和c.html之间有一定的关系,是否考虑在a.html上直接加上c.html的链接?
用户访问模式分析
有哪一些网页,用户只要访问了其中的一页,则可以断定他也要访问其他的网页?即按不同的用户访问模式,把网页分组,得到一个一个的兴趣点。哪些用户所访问的网页组成比较类似(具有类似的兴趣),即根据用户行为的相似性,把用户按行为模式分类。
用户归类
通过用户填写的信息如何把用户归入某一特定的类别?然后可对同一类别中的用户提供相似的服务。
用户可以得到什么
对网站的修改更加又目的、有依据,稳步的提高用户满意度
发现系统性能瓶颈,找到安全漏洞
查看网站流量模式,找到网站最重要的部分。
发现用户的需要和兴趣,对需求强烈的地方提供优化。
根据用户访问模式修改网页之间的连接,把用户想要的东西以更快且有效的方式提供给用户。
在正确的地方正确的时间把正确的信息提供给正确的人。
测定投资回报率
测定广告和促销计划的成功度
找到最有价值的ISP和搜索引擎
测定合作和结盟网站对自身的价值
提供个性化网站
对大多数Web应用来说,让用户感到真个网站是完全为他自己定制的个性化网站,是Web站点成功的秘诀。针对不同的用户完全按照其个人的兴趣和爱好(数据挖掘算法得到的用户访问模式),向用户动态的提供要浏览的建议,自动提供个性化的网站。
典型商业问题
网站的访问量增加了吗?在什么地方?为什么?
用户对我们的新的应用(功能、内容)反映如何?
我们的新一轮宣传攻势效果如何?
怎样评价我们做的某一项广告?
访问我们网站的都是一些什么人?
用户是否要经过复杂的步骤才能得到他想要的东西?
哪些应用(内容)占据了大部分的网络流量?
哪些用户在使用网站上体现了相似的行为?
技术问题
数据处理
如何得到分析和数据挖掘所用的数据,主要采用两种方法,一是直接使用Web Server的log文件,二是用网络监听的办法,在数据包中提取出HTTP请求和应答。最后两种数据源都要转换成固定的格式存放在数据库或数据仓库内,供统计分析和数据挖掘使用。
统计分析
在数据库的基础上,针对不同的数据运行各种统计函数。
数据挖掘
数据挖掘技术是实现智能分析,得到隐藏在大量繁杂数据内部知识的关键。通过对用户访问网站的历史数据(即我们通过数据处理得到的数据)应用各种数据挖掘技术,得到高层知识,提供给用户作决策支持,或利用这些知识动态生成网页,为用户提供访问建议。
关联规则(Association Rules)
发现server session中请求网页的相关性。
可用于:优化网站组织,网络代理中的预取功能
聚集(Clustering)
使用分组(usage clusters)把具有相似浏览模式的用户分成组
可用于:电子商务应用中市场分片(market segmentation)和为用户提供个性化服务
网页分组(page clusters)按内容的相似性把网页分类
可用于:搜索引擎和Web浏览助手(Web assistance providers),为用户提供推荐链接
归类(Classification)
根据用户的个人资料,将其归入某一特定的类
可使用:决策树、naive Bayesian classifiers、k-最近邻居等算法
序列模式(Sequential Patterns)
发现一个session内部的网页间的时间相关性
可用于:预测用户的访问,而提供建议
Web分析
最新推荐文章于 2019-09-02 08:49:13 发布