Java8 新特性 lambda表达式详解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiaochuanding/article/details/55516726

一款音乐播放器,基于5.0新特性,效果炫酷,点击看源码

导图

这里写图片描述

文章最后有源码

简介

学习lambda表达式就要先知道函数式接口是什么?

函数式接口(Functional Interfaces):如果一个接口定义个唯一一个抽象方法,那么这个接口就成为函数式接口。同时,引入了一个新的注解:@FunctionalInterface。可以把他它放在一个接口前,表示这个接口是一个函数式接口。这个注解是非必须的,只要接口只包含一个方法的接口,虚拟机会自动判断,不过最好在接口上使用注解 @FunctionalInterface 进行声明。在接口中添加了 @FunctionalInterface 的接口,只允许有一个抽象方法,否则编译器也会报错。

示例:

 /**
  * 函数式接口
  */
    @FunctionalInterface
    interface Sum{
        int add(int value);
    }

Lambda表达式:可以让你的代码更加的简洁。ambda无法单独出现,需要一个函数式接口来盛放,可以说lambda表达式方法体是函数式接口的实现,lambda实例化函数式接口,可以将函数作为方法参数,或者将代码作为数据对待。

主要优点:
1.代码变得更加简洁紧凑
2.可读性强,
3.并行操作大集合变得很方便,可以充分发挥多核cpu的优势,更加便于多核处理器编写代码等,

语法

Lambda语法
(parameters)->expression 或者 (parameters)->{statements;}
Lambda表达式由三部分组成:
1.parameters:类似方法中的形参列表,这里的参数是函数式接口里的参数。这里的参数类型可以明确的声明也可不声明而由JVM隐含的推断,当只有一个推断类型时可以省略掉圆括号。
2.-> :可以理解为“被用于”的意思
3.方法体:可以是表达式也可以是代码块,实现函数式接口中的方法。这个方法体可以有返回值也可以没有返回值

示例:

1.不接受参数,直接返回1
    ()->1
2.接受两个int类型的参数,返回这两个参数的和
    (int x,int y )-> x+y
3.接受x,y两个参数,JVM根据上下文推断参数的类型,返回两个参数的和
    (x,y)->x+y
4.接受一个字符串,打印该字符串,没有返回值
    (String name)->System.out.println(name)
5.接受一个参数,JVM根据上下文推断参数的类型,打印该参数,没有返回值,只有一个参数可以省略圆括号
   name->System.out.prinln(name)
6.接受两个String类型参数,分别输出,没有返回值
    (String name,String sex)->{System.out.println(name);System.out.println(sex)}
7.接受呀一个参数,返回它本身的2倍
    x->2*x
传统写法与Lambda写法的比较

首先定义一个函数式接口

/**
 * 函数式接口
 * @param <A>
 * @param <B>
 */
@FunctionalInterface
interface Transform<A,B>{
    B transform(A a);
}

两种写法的对比

 //传统方式使用接口
    Transform<String ,Integer> transform1 = new Transform<String, Integer>() {
        @Override
        public Integer transform(String s) {
            return Integer.valueOf(s);
        }
    } ;

    //Lambda方式使用接口,就是这么简单粗暴,没脾气
    Transform<String,Integer> transform2 = (s)-> Integer.valueOf(s);

访问权限

在Lambda表达式使用中,Lambda表达式外面的局部变量会被JVM隐式的编译成final类型,Lambda表达式内部只能访问,不能修改
Lambda表达式内部对静态变量和成员变量是可读可写的
Lambda不能访问函数接口的默认方法,在函数接口中可以添加default关键字定义默认的方法

局部变量示例:

 public static void main(String[] args) {
        int num = 6;//局部变量
        Sum sum = value -> {
//            num = 8; 这里会编译出错
            return num + value;
        };
        sum.add(8);
    }

    /**
     * 函数式接口
     */
    @FunctionalInterface
    interface Sum{
        int add(int value);
    }

静态变量和成员变量示例:

 public int num1 = 6;
    public static int num2 = 8;
    private int getSum(){
        Sum sum = value -> {
            num1 = 10;
            num2 = 10;
            return  num1 + num2;
        };
        return sum.add(1);
    }

    /**
     * 函数式接口
     */
    @FunctionalInterface
    interface Sum{
        int add(int value);
    }

方法引用

在lambda表达式中,方法引用是一种简化写法,引用的方法就是Lambda表达式的方法体的实现
语法结构:ObjectRef:: methodName
左边是类名或者实例名,中间的“::”是方法引用符号,右边是相应的方法名
方法引用一般分为三类:
静态方法引用,实例方法引用,构造方法引用

静态方法引用示例:

public static void main(String[] args){
        //传统方式
        Transform<String ,Integer> transform1 = new Transform<String, Integer>() {
            @Override
            public Integer transform(String s) {
                return C_方法引用之静态方法引用.strToInt(s);
            }
        };
        int result1 = transform1.transform("100");

        //Lambda方式
        Transform<String,Integer> transform2 = C_方法引用之静态方法引用 ::strToInt;
        int result2 = transform2.transform("200");
    }

    static int strToInt(String str){
        return Integer.valueOf(str);
    }

    /**
     * 函数式接口
     * @param <A>
     * @param <B>
     */
    @FunctionalInterface
    interface Transform<A,B>{
        B transform(A a);
    }

实例方法引用示例:

public static void main(String[] args){
        //传统方式
        Transform<String ,Integer> transform1 = new Transform<String, Integer>() {
            @Override
            public Integer transform(String s) {
                return new Obj().strToInt(s);
            }
        };
        int result1 = transform1.transform("100");
        //Lambda方式
        Obj obj = new Obj();
        Transform<String,Integer> transform2 = obj::strToInt;
        int result2 = transform2.transform("200");
    }
    /**
     * 函数式接口
     * @param <A>
     * @param <B>
     */
    interface Transform<A,B>{
        B transform(A a);
    }
    /**
     * 实例对象类
     */
    static class Obj{
        public int strToInt(String str){
            return Integer.valueOf(str);
        }
    }

构造方法引用示例:

 //传统方式
        Factory factory1 = new Factory() {
            @Override
            public Parent create(String name, int age) {
                return new Boy(name,age);
            }
        };
        Boy boy = (Boy) factory1.create("小明",18);
        factory1 = new Factory() {
            @Override
            public Parent create(String name, int age) {
                return new Girl(name,age);
            }
        };
        Girl girl = (Girl) factory1.create("小红",18);
        //Lambda方式
        Factory<Boy> boyFactory = Boy::new;
        Boy boy1 = boyFactory.create("小明",18);
        Factory<Girl> girlFactory = Girl::new;
        Girl girl1 = girlFactory.create("小红",18);

其他类和接口:

//工厂类接口
public interface Factory<T extends Parent> {
    T create(String name,int age);
}
//父类
public class Parent {
    private String name ;
    private int age;
    public Parent(String name, int age) {
        this.name = name;
        this.age = age;
    }
    public void doSome(){

    }
}
//男孩类
public class Boy extends Parent {
    public Boy(String name, int age) {
        super(name, age);
    }

    @Override
    public void doSome() {
        System.out.println("我是个男孩");
    }
}
//女孩类
public class Girl extends Parent {
    public Girl(String name, int age) {
        super(name, age);
    }

    @Override
    public void doSome() {
        System.out.println("我是个女孩");
    }
}

四个常用的接口

Predicate接口
/**
 * Predicate接口:输入一个参数,返回一个boolean值,内置了许多用于逻辑判断的默认方法
 */
public class F_实践之Predicate {
    public void predicateTest(){
        Predicate<String> predicateStr = s -> s.length()>8;
        boolean testResult = predicateStr.test("test");//需要api 24
        testResult = predicateStr.negate().test("test");//取反,也就是s.length<=8

        Predicate<Object> predicateObj = Objects::nonNull;
        Object obj = null;
        testResult = predicateObj.test(obj);//判断是否为空
    }
}
Consumer接口
/**
 * consumer接口:对输入的参数进行操作。有输入没输出
 */
  private static void consumerTest(){
        Consumer<Integer> add5 = (p) -> {
            System.out.println("old value:" + p);
            p = p + 5;
            System.out.println("new value:" + p);
        };
        add5.accept(10);
    }
Function接口
/**
 * Function接口:接受一个参数,返回单一的结果。默认的方法(andThen)可将多个函数串在一起,形成复合Funtion(有输入,有输出)结果
 */
  public static void functionTest(){
        Function<String, Integer> toInteger = Integer::valueOf;
        //toInteger的执行结果作为第二个backToString的输入
        Function<String, String> backToString = toInteger.andThen(String::valueOf);
        String result = backToString.apply("1234");
        System.out.println(result);

        Function<Integer, Integer> add = (i) -> {
            System.out.println("frist input:" + i);
            return i * 2;
        };
        Function<Integer, Integer> zero = add.andThen((i) -> {
            System.out.println("second input:" + i);
            return i * 0;
        });

        Integer res = zero.apply(8);
        System.out.println(res);
    }
Supplier接口
/**
 * Supplier接口:返回一个给定类型的结果。不需要输入参数,无输入有输出
 */
   private static void supplierTest(){
        Supplier<String> supplier = () -> "我就是输出";
        String s = supplier.get();
        System.out.println(s);
    }

串行stream操作

Lambda为java8带来了闭包,支持对集合对象的stream进行函数式操作, stream api被集成进了collection api ,允许对集合对象进行批量操作。
Stream表示数据流,它没有数据结构,本身也不存储元素,其操作也不会改变源Stream,而是生成新Stream.作为一种操作数据的接口,它提供了过滤、排序、映射、规约等多种操作方法,
这些方法按照返回类型被分为两类:凡是返回Stream类型的方法,称之为中间方法(中间操作),其余的都是完结方法(完结操作)。完结方法返回一个某种类型的值,而中间方法则返回新的Stream。
中间方法的调用通常是链式的,该过程会形成一个管道,当完结方法被调用时会导致立即从管道中消费值,这里我们要记住:Stream的操作尽可能以“延迟”的方式运行,也就是我们常说的“懒操作”,
这样有助于减少资源占用,提高性能。对于所有的中间操作(除sorted外)都是运行在延迟模式下。

Stream不但提供了强大的数据操作能力,更重要的是Stream既支持串行也支持并行,并行使得Stream在多核处理器上有着更好的性能。

Stream的使用过程有着固定的模式:

1.创建Stream
2.通过中间操作,对原始Stream进行“变化”并生成新的Stream
3.使用完结操作,生成最终结果

 //创建一个集合
        List<String> list = new ArrayList<>();
        list.add("a1");list.add("a2");list.add("a3");list.add("b1");list.add("b2");list.add("b3");

中间操作方法

过滤(filter)

结合Predicate接口,Filter对流对象中的所有元素进行过滤,该操作是一个中间操作,这意味着你可以在操作返回结果的基础上进行其他操作

 public static void sreamFilterTest(List<String> lists){ //要明确这list的泛型类型,否则jvm不能根据上下文确定参数类型
        lists.stream().filter((s -> s.startsWith("a"))).forEach(System.out::println);//将开头是a的过滤出来

        //等价于以上操作
        Predicate<String> predicate = (s) -> s.startsWith("a");//将开头是a的过滤出来
        lists.stream().filter(predicate).forEach(System.out::println);

        //连续过滤
        Predicate<String> predicate1 = (s -> s.endsWith("1"));//将开头是a,并且结尾是1的过滤出来
        lists.stream().filter(predicate).filter(predicate1).forEach(System.out::println);
    }
排序(sorted)

结合Comparator,该操作返回一个排序过后的流的视图,原始流的顺序不会改变。通过Comparator来指定排序规则,默认是自然排序

 private static void streamSortedTest(List<String> list){
        //默认排序
        list.stream().filter(s -> s.startsWith("a")).forEach(System.out::println);
        System.out.println("- - - - - - - - -");
        //自定义排序
        list.stream().sorted(((s, t1) -> t1.compareTo(s))).filter(s -> s.startsWith("a")).forEach(System.out::println);
    }
映射(map)

结合Function接口,该操作能将流对象中的每一个元素映射为另一个元素,实现元素类型的转换。

 private static void streamMapTest(List<String> list){
        list.stream().map(String::toUpperCase).sorted((s, t1) -> t1.compareTo(s)).forEach(System.out::println);
        System.out.println("- - - - - - ");
        //自定义映射规则
        Function<String,String> function = s -> {return  s + ".map3";};
        list.stream().map(function).forEach(System.out::println);
    }

完结操作方法

匹配(match)

用来判断某个predicate是否和流对象相匹配,最终返回boolean类型的结果

 private static void streamMatchTest(List<String> list){
        //流对象中只要有一个元素匹配就返回true
        boolean anyStartWithA = list.stream().anyMatch(s -> s.startsWith("a"));
        System.out.println("集合中是否有以'a'来头:"+ anyStartWithA);
        //流对象中每一个元素都匹配才返回true
        boolean allStartWithA = list.stream().allMatch(s -> s.startsWith("a"));
        System.out.println("集合中每一个都是以'a'开头:"+ allStartWithA);
        //流对象中没有匹配时返回true
        boolean noneStartWithA = list.stream().noneMatch(s -> s.startsWith("c"));
        System.out.println("集合中没有以'c'开头:"+ noneStartWithA);
    }
收集(collect)

在对经过变换后,将变换的stream元素收集,比如将这些元素存在集合中,可以使用stream提供的collect方法

 private static void streamCollectTest(List<String> list){
        List<String> listNew = list.stream().filter(s -> s.startsWith("b")).sorted().collect(Collectors.toList());
        System.out.println(listNew );
    }
规约(reduce)

允许我们用自己的方式计算元素或者将一个stream中元素以某种规律关联

private static void streamReduceTest(List<String> list){
        Optional<String> optional = list.stream().sorted().reduce((s, s2) -> {
            System.out.println(s+"-"+s2);
            return s+"-"+s2;
        });
    }
计数(count)

用来统计流中元素的总数

private static void streamCountTest(List<String> list){
        long count = list.stream().filter(s -> s.startsWith("b")).count();
        System.out.println("以'b'开头的数量:"+ count);
    }

并行操作stream

并行Stream:基于Fork-join并行分解框架实现,将大数据集合切分为多个小数据结合交给不同的线程去处理,这样在多核处理情况下,性能会得到很大的提高。
这和MapReduce的设计理念一致:大任务化小,小任务再分配到不同的机器执行。只不过这里的小任务是交给不同的处理器。
结果是性能提高50%,单核下还是串行流性能比较好,并行流的使用场景是多核+大数据

 //创建一个大集合
        List<String> list = new ArrayList<>();
        for (int i = 0; i < 10000000; i++) {
            UUID uuid = UUID.randomUUID();
            list.add(uuid.toString());
        }
 //并行stream
    private static void parallelStreamSortedTest(List<String> list){
        long startTime = System.nanoTime();//返回最准确的可用系统计时器的当前值,以毫微秒为单位。
        long count = list.parallelStream().sorted().count();
        long endTime = System.nanoTime();
        long millis = TimeUnit.NANOSECONDS.toMillis(endTime - startTime);
        System.out.printf("并行排序花费时间:%d ms",millis);
    }
    //串行stream
    private static void streamSortedTest(List<String> list){
        long startTime = System.nanoTime();//返回最准确的可用系统计时器的当前值,以毫微秒为单位。
        long count = list.stream().sorted().count();
        long endTime = System.nanoTime();
        long millis = TimeUnit.NANOSECONDS.toMillis(endTime - startTime);
        System.out.printf("串行排序花费时间:%d ms",millis);
    }

运行结果:

并行排序花费时间:4362 ms
串行排序花费时间:9847 ms

查看源码

没有更多推荐了,返回首页