Python —— GUI实现 :: wxPython

这是一篇教程学习笔记,原教程地址:https://www.yiibai.com/wxpython/wx_frame_class.html

0. 主要的类

0.1. wxWindows

在这里插入图片描述

0.2. wxGDIObject

在这里插入图片描述

0.3. wxDC

在这里插入图片描述

0.4. wxSizer

在这里插入图片描述

0.5. wxButton & wxControl

在这里插入图片描述

1. wx.Frame类

1.1. 构造函数

其重载的构造函数Wx.Frame (parent, id, title, pos, size, style, name),其各参数的意义:
在这里插入图片描述其中style可以是下面的样式:
在这里插入图片描述
示例:

window = wx.Frame(None, -1, “Hello”, pos = (10,10), size = (300,200), style = wxDEFAULT_FRAME_STYLE, name = "frame")

1.2. wx.Frame类成员函数

在这里插入图片描述

1.3. wx.Frame 事件绑定器

在这里插入图片描述

2. wx.Panel类

小构件,如按钮,文本框等被放置在Panel窗口,而Panel类通常是被放在一个wxFrame对象中。

2.1 构造函数

重载的构造函数:

Panel(parent, id=ID_ANY, pos=DefaultPosition, size=DefaultSize,
      style=TAB_TRAVERSAL, name=PanelNameStr)

2.2 API

控件可以通过Sizer布置在panel中。在wxPanel构造,父参数是wx.Frame对象,id参数的默认值是wx.ID_ANY,而默认的样式参数是wxTAB_TRAVERSAL。关于sizer则有下面几类:
在这里插入图片描述
Sizer对象为使用wxPanel类的SetSizer ()方法在面板的布局管理器应用。

2.3. 示例

#创建面板
        panel = wx.Panel(self) 
        
        #在Panel上添加Button
        button = wx.Button(panel, label = u'关闭', pos = (150, 60), size = (100, 60))
        
        #绑定单击事件
        self.Bind(wx.EVT_BUTTON, self.OnCloseMe, button)

3. 其他类的说明请参考教程

https://www.yiibai.com/wxpython/wxpython_menus.html

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值