未名湖边的烦恼引起的递归问题探讨

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiaoge132/article/details/50411380

未名湖边的烦恼

问题描述  

每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。

  每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)

输入格式 

两个整数,表示m和n

输出格式  

一个整数,表示队伍的排法的方案数。样例输入3 2样例输出5数据规模和约定  m,n∈[0,18]

问题分析这是一种类似汉诺塔问题的题目,首先要保证换鞋的人m 多于借鞋的人n。否则,无论怎么排序,都是会出现无鞋可借的尴尬局面。

所以,首先判断(m>n),否则返回0,表示没有方法来排序。

之后,当还鞋的人数n为0 的时候,这时候无论怎么排序都是一种方法,所以这时候函数返回的是1;



#include "iostream"
using namespace std;
int fun(int m,int n)
{
	if(m<n)
	{
		return 0;
	}
	else if (n==0)
	{
		return 1;
	}
	else return fun(m-1,n)+fun(m,n-1);
}
int main()
{
	int m,n;
	cout<<"输入还鞋人m,借鞋人n"<<endl;
	cin>>m>>n;
	cout<<"有"<<fun(m,n)<<"排序方法"<<endl;
	return 0;
}

这里的return fun(m-1,n)+fun(m,n-1)  前面的fun(m-1,n)意思是还鞋子的一个人站在最前面,之后剩下的哪些人再接着排序,fun(m,n-1) 意思是借鞋子的人站在最后面,剩下的再接着排序。

猴子吃桃问题



问题描述:猴子第一天摘了若干个桃子,当即吃了一半,还不解馋,又多吃了一个;第二天,吃剩下的桃子的一半,还不过瘾,又多吃了一个;以后每天都吃前一天剩下的一半多一个,到第10天想再吃时,只剩下一个桃子了。问第一天共摘了多少个桃子?


同样还有一道猴子吃桃问题也可以用递归来解决。

public class Cpeach {
	public int eat02(int n) {
		System.out.println("f(" + n + ")进栈");
		if (n == 1) {
			System.out.println("到达最大深度!");
			System.out.println("f(" + n + ")出栈");
			
			return 1;
		} else {
			int a = eat02(n - 1) * 2 + 2;
			System.out.println("f(" + n + ")出栈");
			return a;

		}
	}

	public static void main(String[] args) {

		int n = 10;
		Cpeach pea = new Cpeach();
		int num = pea.eat02(n);
		System.out.println(num);
	}
}




在此,特地有了出栈和进栈来清楚的表示对递归对系统栈的影响。

从上面,可以清楚的看到栈对空间复杂度的影响。


1加到100的数学题

其实高斯小时候的从1加到100的数学题也是可以用递归方法来解决的。


public class NumOneToHundred {
	
	public int add(int n) {
		if(n == 1){
			return 1;
		}else{
			return add(n-1) +n;
		}
	}
	public static void main(String[] args) {
		int n = 100;
		NumOneToHundred a = new NumOneToHundred();
		int sum = a.add(n);
		System.out.println(sum);
	}
}



爬楼梯问题:

一段楼梯共n级台阶,每次只能走一级或两级,问共有多少种走法?列出n=10时的所有走法。


乍看知道问题感觉还是稍显的有些麻烦,我们这样子来想,假如 n = 7 时,最后一步是会有f(7) = f(5) + f(6)

得在 n = 1和2的时候,我们得到f(1),f(2)为1

所以,我们到下面的公式

 

说白了,这个其实就是斐波那契数列

public class ClimbStairs {
	public int stairs(int n) {
		if (n == 1)
			return 1;
		if (n == 2)
			return 2;
		else {
			return stairs(n - 1) + stairs(n - 2);
		}
	}
	public static void main(String[] args) {
		int n = 7;
		ClimbStairs cs = new ClimbStairs();
		int sum = cs.stairs(n);
		System.out.println(sum);
	}

}

递归问题的时间和空间复杂度都是巨大的,在项目过程中要尽量减少使用。

递归虽好,不要贪杯!

阅读更多
换一批

没有更多推荐了,返回首页