手把手教你学 MATLAB(3.3):性能优化

目录

手把手教你学 MATLAB:性能优化

1. 向量化运算

1.1 示例:向量化 vs 循环

2. 预分配数组

2.1 示例:预分配数组

3. 使用内置函数

3.1 示例:使用内置函数

4. 避免不必要的计算

4.1 示例:避免不必要的计算

5. 使用 JIT 加速

5.1 示例:利用 JIT 加速

6. 并行计算

6.1 示例:使用并行计算

7. 使用 profiler 工具

7.1 示例:使用 profiler

8. 总结


手把手教你学 MATLAB:性能优化

在 MATLAB 中,性能优化是提高程序运行效率的关键。通过合理的代码优化技巧,可以显著减少计算时间和内存消耗。本篇教程将详细介绍几种常见的 MATLAB 代码优化技巧,帮助你提高程序的运行效率。

1. 向量化运算

向量化运算是 MATLAB 中最有效的优化技巧之一。MATLAB 在处理矩阵和数组时非常高效,因此尽量避免使用循环,而是使用向量化操作。

1.1 示例:向量化 vs 循环
 

Matlab

深色版本

% 创建一个大数组
n = 1000000;
A = rand(n, 1);
B = rand(n, 1);

% 使用循环计算元素乘积
tic
C_loop = zeros(n, 1);
for 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值