手把手教你学 MATLAB(4.3):如何使用 MATLAB 的机器学习工具箱进行数据分类、回归和聚类

目录

手把手教你学 MATLAB:机器学习

1. 数据准备

1.1 加载数据

1.2 数据预处理

2. 数据分类

2.1 决策树分类

2.2 支持向量机(SVM)分类

2.3 K近邻(KNN)分类

3. 回归

3.1 线性回归

3.2 决策树回归

3.3 支持向量回归(SVR)

4. 聚类

4.1 K均值聚类

4.2 层次聚类

5. 综合示例

6. 总结


手把手教你学 MATLAB:机器学习

MATLAB 提供了强大的机器学习工具箱(Statistics and Machine Learning Toolbox),可以帮助用户轻松进行数据分类、回归和聚类等任务。本篇教程将详细介绍如何使用 MATLAB 的机器学习工具箱进行这些任务。

1. 数据准备

在进行机器学习之前,首先需要准备好数据。MATLAB 提供了多种方法来加载和预处理数据。

1.1 加载数据

假设我们有一个包含特征和标签的数据集 data.csv,其中第一列是标签,其余列是特征。

 

Matlab

深色版本

% 读取数据
data = readtable('data.csv');

% 分离特征和标签
X = data(:, 2:end); % 特征
y = data(:, 1); 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值