pytorch模型转化为onnx

本文介绍如何使用PyTorch将预训练的fbresnet10模型转换为ONNX格式,包括设置输入和输出名称,加载模型,评估模型状态,并导出模型。最后,提供了一个简化ONNX模型的命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch, onnx, collections

print('notice !!!! ----> use python3 run this script!!! \n')
INPUT_DICT = 'res/model_test/eye_fbresnet10_motion.pth'//input path
OUT_ONNX = 'res/model_test/eye_fbresnet10_motion.onnx'//output path

x = torch.randn(1, 3, 224, 224);
input_names = ["input"];
out_names = ["output"];

xmodel= torch.load(INPUT_DICT, map_location=torch.device('cpu'))
xmodel.eval()

torch.onnx.export(xmodel, x, OUT_ONNX, export_params=True, training=False, input_names=input_names, output_names=out_names)
print('please run: python3 -m onnxsim test.onnx  test_sim.onnx\n')//对转化后的模型,运行这个命令,简化符号
print('convert done!\n')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值