import torch, onnx, collections
print('notice !!!! ----> use python3 run this script!!! \n')
INPUT_DICT = 'res/model_test/eye_fbresnet10_motion.pth'//input path
OUT_ONNX = 'res/model_test/eye_fbresnet10_motion.onnx'//output path
x = torch.randn(1, 3, 224, 224);
input_names = ["input"];
out_names = ["output"];
xmodel= torch.load(INPUT_DICT, map_location=torch.device('cpu'))
xmodel.eval()
torch.onnx.export(xmodel, x, OUT_ONNX, export_params=True, training=False, input_names=input_names, output_names=out_names)
print('please run: python3 -m onnxsim test.onnx test_sim.onnx\n')//对转化后的模型,运行这个命令,简化符号
print('convert done!\n')
本文介绍如何使用PyTorch将预训练的fbresnet10模型转换为ONNX格式,包括设置输入和输出名称,加载模型,评估模型状态,并导出模型。最后,提供了一个简化ONNX模型的命令。

1万+

被折叠的 条评论
为什么被折叠?



