在实际的Flink 项目中,如何观察Flink的性能,如何监控Flink的运行状态,如何设置报警策略?下面简单讲下我的经验吧。
一、Flink webUI
首先聊下Flink webUI。如下图所示:

如果是本地调试模式,默认是不开启webui的。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
上面的初始化方式,本地调试默认不开启webui。
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());
需要使用上面这种方式才能在本地调试的时候打开webui。当然了,也需要在pom文件中添加依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
如果你是on yarn 模式,则必须使用第一种初始化方式,on yarn 默认可以查看webui。
下面是一个读取kafka数据,通过Flink 处理后,再写入目标kafka的任务。

如上图所示,点击sink,在metrics中选择Sink__sink.numRecordsInPerSecond。这里有几个

本文详细介绍了在Flink项目中如何进行监控和预警,包括利用Flink WebUI观察性能,Kafka消费监控,YARN监控,以及如何设置报警策略。通过监控WebUI、Kafka Lag和YARN状态,结合业务需求设定合理的预警阈值,确保Flink任务的稳定运行。
最低0.47元/天 解锁文章
757

被折叠的 条评论
为什么被折叠?



