BlazeIt
论文:BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-Based Video Analytics,VLDB,2019
演示Demo:Challenges and Opportunities in DNN-Based Video Analytics: A Demonstration of the BlazeIt Video Query Engine,CIDR,2019
应用场景:
自定义的FQL查询,非结构化查询。主要针对聚合和限制查询,例如:查询桥上每天平均有多少车通过,查询至少有一辆公交车和五辆汽车的十帧,且每帧至少相隔10秒。
解决的问题:
对象查询
描述:
BlazeIt专门针对聚合和limit查询,提出了FQL查询语言,以及新的查询优化方案。
Motivation:
之前的工作使用近似过滤的方法来降低视频分析的成本,但没有处理两类重要的查询,即聚合和限制查询(aggregation and limit );此外,这些方法仍然需要复杂的代码来部署。
Goal:
BLAZEIT’s goal is to execute FRAMEQL queries as quickly aspossible;
BLAZEIT的目标是以最快的速度执行FRAMEQL查询。
Problem/Challenges:
从可用性的角度,DNN推理需要跨很多低级的库,进行复杂的命令式编程;
从计算的角度,在视频的每一帧上执行对象检测耗时较久。
Solution:
(1)提出FQL声明式编程语言
(2)针对聚合操作:控制变量的方法
我们的第一个优化,是回答聚合查询,使用查询特定的NN(即专门的NN[

BlazeIt是一个专注于聚合和限制查询的系统,它提出了FQL查询语言和优化策略。通过控制变量的NN及代理模型,优化了对象检测的效率,尤其适用于视频分析中的复杂查询。系统已在Github开源,并提供了 Youtube 数据集。
最低0.47元/天 解锁文章
387

被折叠的 条评论
为什么被折叠?



