70. 爬楼梯
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
上面是题目和说明
其实做算法题,一定要先理解题,弄清楚题目之后,然后总结规律。
我对算法题的理解,其实就是总结规律的过程。
首先题目中说每次你可以爬 1 或 2 个台阶,
1、那么我们可以这样理解,总共有n个台阶,那么我们爬到n个台阶的前一步是在n-1或者n-2台阶上,为什么会这样说呢,因为每次只能爬1或者2个台阶,所以到达n个台阶的前一步要么是爬了1个台阶到达n的,要么是爬了2个达到n的。所以到达n个台阶的总方法是到达n-1的总方法+到达n-2的总方法;也就是下面的这个公式:
f(n) = f(n-1) + f(n-2)
2、边界条件
f ( 0 ) = 1 , f ( 1 ) = 1
我们是从第 0 级开始爬的,所以从第 0级爬到第 0级我们可以看作只有一种方案,即f(0)=1;从第 0 级到第 1 级也只有一种方案,即爬一级,f(1)=1。
理解了上面两点之后,我们的思路就打开了。记住我们最后求的是到达n个台阶的方法,不是台阶数,别搞混了。
/**
* @param {number} n
* @return {number}
*/
var climbStairs = function(n) {
let f = [];
f[0] = 1;
f[1]=1;
for(let i = 2; i <= n; i++){
f[i] = f[i-1] + f[i -2]
}
return f[n]
};
还有更简洁的方法,可以继续探索一下。我看官网上有更简洁的方法。
做算法题最重要的是先理解题,然后总结规律,这样才能做的更顺。