使用venv 创建虚拟环境

1. 安装venv

python3.6及以上已经默认安装,python3.5需要通过系统的包管理工具安装,例如在Ubuntu上,可以这么安装:

sudo apt install python3-venv

 2.创建虚拟环境

                虚拟环境名字
python3 -m venv test_env

 3. 启用虚拟环境

在Linux和Mac环境下,打开终端,执行下面的命令:

source ./test_env/bin/activate

在Windows环境下,打开PowerShell,执行下面的命令:

4. 安装包

虚拟环境启用后,就可以使用pip命令来安装需要的包:

pip install easydict

注意这里不需要root权限,因此无需添加sudo

在Linux和Mac系统上,安装的包放在./test_env/lib/pythonx.x/site-packages 目录下,在Windows系统上,是在./test_env/Lib/site-packages 目录下。

 6. 退出虚拟环境

退出虚拟的python环境,在命令行执行下面的命令即可:

deactivate
压缩感知 (Compressed Sensing) 是一种信号处理技术,它可以通过采样信号的稀疏表示来降低传感器对信号的采样率。压缩感知可以应用于多目标向量 (MMV) 模型中。 多目标向量 (MMV) 模型是一种压缩感知模型,它用于处理同时存在多个目标信号的情况。在压缩感知 MMV 模型中,我们假设目标信号的稀疏表示是已知的,但目标信号本身是未知的。通过在传感器上进行稀疏测量,可以使用压缩感知算法从测量结果中恢复多个目标信号的稀疏表示。 引用提到的压缩感知追踪算法 (CoSaMP) 是一种常用的压缩感知算法,它可以有效地处理压缩感知 MMV 模型。该算法通过多次迭代,同时估计多个目标信号的稀疏表示和非零位置,从而实现对多个目标信号的恢复。引用中提到的基于贝叶斯压缩感知的高分辨率成像算法也可以应用于压缩感知 MMV 模型中,它利用目标信号的稀疏特性和相位误差模型,通过贝叶斯压缩感知理论实现对多个目标信号的高分辨率成像。 然而,压缩感知模型在处理宽带信号时可能会遇到基不匹配问题,即传统的离散频域压缩感知模型难以适应宽带频谱稀疏结构的动态变化。引用提到,在主用户通信行为未知且随时间变化的情况下,压缩频谱感知可能会降低对主用户信号频率估计的准确性。 因此,在压缩感知 MMV 模型中,需要考虑基不匹配问题和宽带频谱稀疏结构的动态变化。可以通过改进传统的压缩感知算法,如引用中提到的基于贝叶斯压缩感知的高分辨率成像算法,来解决这些问题,以实现对多个目标信号的准确恢复和估计。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [压缩感知重构算法综述-学习笔记](https://blog.csdn.net/qq_30507287/article/details/114626462)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [基于贝叶斯压缩感知的ISAR自聚焦成像](https://download.csdn.net/download/weixin_38543460/15843916)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [基于原子范数的宽带压缩频谱感知研究_硕士论文_许康](https://download.csdn.net/download/hanzhenru/12261097)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值