pycharm远程连接Linux pyspark

10 篇文章 0 订阅

1、确保remote端Python、spark安装正确  设置必要的环境变量

2、本地Pycharm设置

File > Settings > Project Interpreter:

Project Interpreter > Add remote(前提:remote端python安装成功):

注意,这里的Python路径为python interpreter path,如果python安装在其它路径,要把路径改过来

Run > Edit Configuration (前提:虚拟机中共享本地目录成功):

此处我配置映射是在Tools中进行的

Tools > Dployment > Configuration

PyCharm是一款由JetBrains公司开发的Python集成开发环境,支持代码分析、图形化调试以及集成版本控制等特性,非常适合进行Python开发工作。而PySpark是Apache Spark的Python API,它提供了一个高性能的集群计算系统,并且对Python语言提供了良好的支持。 要在PyCharm中开发PySpark项目,你可以遵循以下步骤: 1. 安装PyCharm:从JetBrains官网下载并安装PyCharm到你的电脑上。 2. 安装Python解释器:在PyCharm中创建一个新的项目,并选择安装Python解释器。可以通过PyCharm的项目解释器设置来安装或者配置已有的Python环境。 3. 安装PySpark:在PyCharm的终端中,使用pip命令安装PySpark库。通常命令如下: ``` pip install pyspark ``` 也可以选择使用conda来安装,如果使用的是conda环境管理器: ``` conda install pyspark ``` 4. 创建Spark配置文件:在项目目录中创建一个名为`spark-defaults.conf`的文件,配置必要的Spark参数。例如: ``` spark.master local[*] spark.eventLog.enabled true spark.eventLog.dir file:///path/to/spark/eventLogDir ``` 5. 配置PyCharm以运行PySpark应用:在PyCharm中设置运行/调试配置,指定Python解释器、工作目录、环境变量等。对于PySpark应用,可能需要设置`PYSPARK_PYTHON`环境变量,指定Python解释器的路径。 6. 编写PySpark代码:在PyCharm中编写PySpark代码,使用PySpark的DataFrame API或其他功能进行数据分析和处理。 7. 运行和调试:使用PyCharm的运行按钮来执行PySpark应用,或使用调试功能进行代码调试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值