指数族分布以及共轭先验

我们在大学中学到的概率分布有一大部分属于指数族分布,该类分布有一些共同的重要特性。

概率密度形式

指数族分布的概率密度函数形式可以表达为:

p(x;\eta ) = h(x) exp(T(x)^T\eta - A(\eta))

其中可以把其看做三个部分,包含x的h(x)、包含x和\etaT(x)^T\eta还有包含\etaA(\eta)。我们把\eta称为自然参数(natural parameters),T(x)称为充分统计量(sufficient statistic),A(\eta)称为 log normalizer(它确保概率积分结果为1,实际上指数族分布做积分使结果为1,可以得到 A(\eta) = log \int h(x) exp(T(x)^T\eta) dx)。

指数族分布的最大似然方法(MLE)

指数族分布的最大似然的求解是非常方便的,它有统一的格式。

L(\eta) = argmax_\eta log(\prod _i^Np(x_i|\eta)) \\ = argmax_\eta \prod _i^N h(x_i) exp(T(x_i)^T\eta - A(\eta)) \\ = argmax_\eta \prod _i^N h(x_i) \cdot exp(\sum_i^N T(x_i)^T\eta - NA(\eta)) \\ = argmax_\eta \sum_i^N T(x_i)^T\eta - NA(\eta)

我们使上式求导等于0,可以得到

{A}'(\eta) = \frac{1}{N} \sum_i^N T(x_i)

共轭先验

我们知道,后验概率正比于似然概率和先验概率(例如,随机变量有样本D,分布参数为w,则有):

postierior \propto likelyhood \cdot pretierior

那么什么是共轭先验呢?对于似然函数来说,如果某一个先验概率使得其对应的后验概率和先验是同一种分布,那么该先验概率就是共轭的。注意,共轭先验是对于某个似然函数来定义的

如果似然概率是指数族分布,那么我们一定可以找到其对应的共轭先验。此处证略,有兴趣可以参考prml。

参考文献

[1] 徐亦达机器学习视频(bilibili)

[2] Pattern Recognition and Machine Learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值