Lucene分词器,使用中文分词器,扩展词库,停用词

停止词:lucene的停止词是无功能意义的词,比如is 、a 、are 、”的”,“得”,“我” 等,这些词会在句子中多次出现却无意义,所以在分词的时候需要把这些词过滤掉。

 

扩展词库:就是不想让哪些词被分开,让他们分成一个词。

 

 

同义词:假设有一个电子商务系统,销售书籍,提供了一个搜索引擎,一天,市场部的人要求客户在搜索书籍时,同义词就是比如输入“电子”,除了展示电子相关的书籍,还需要展现“机器”相关的书籍。

 

 

1. 常见的中文分词器有:极易分词的(MMAnalyzer) 、"庖丁分词"分词器(PaodingAnalzyer)、IKAnalyzer 等等。其中 MMAnalyzer 和 PaodingAnalzyer 不支持 lucene3.0及以后版本。

   使用方式都类似,在构建分词器时

     Analyzer analyzer 
= new [My]Analyzer(); 

     

2. 这里只示例 IKAnalyzer,目前只有它支持Lucene3.0 以后的版本。 

   首先需要导入 IKAnalyzer3.
2.0Stable.jar 包

 

3. 示例代码

     view plaincopy to clipboardprint
?
public class AnalyzerTest {   
       @Test  
       public void test() throws Exception {   
              String text = "An IndexWriter creates and maintains an index.";   
              /* 标准分词器:单子分词 */  
              Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);   
              testAnalyzer(analyzer, text);   
    
              String text2 = "测试中文环境下的信息检索";   
              testAnalyzer(new IKAnalyzer(), text2); // 使用IKAnalyzer,词库分词   
       }   
    
       /**  
        * 使用指定的分词器对指定的文本进行分词,并打印结果  
        *  
        * 
@param analyzer  
        * 
@param text  
        * 
@throws Exception  
        
*/  
       private void testAnalyzer(Analyzer analyzer, String text) throws Exception {   
              System.out.println("当前使用的分词器:" + analyzer.getClass());   
    
              TokenStream tokenStream = analyzer.tokenStream("content", new StringReader(text));   
              tokenStream.addAttribute(TermAttribute.class);   
    
              while (tokenStream.incrementToken()) {   
                     TermAttribute termAttribute = tokenStream.getAttribute(TermAttribute.class);   
                     System.out.println(termAttribute.term());   
              }   
       }   
}
   
   
public class AnalyzerTest {
       @Test
       public void test() throws Exception {
              String text = "An IndexWriter creates and maintains an index.";
              /* 标准分词器:单子分词 */
              Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
              testAnalyzer(analyzer, text);
 
              String text2 = "测试中文环境下的信息检索";
              testAnalyzer(new IKAnalyzer(), text2); // 使用IKAnalyzer,词库分词
       }
 
       /**
        * 使用指定的分词器对指定的文本进行分词,并打印结果
        *
        * 
@param analyzer
        * 
@param text
        * 
@throws Exception
        
*/
       private void testAnalyzer(Analyzer analyzer, String text) throws Exception {
              System.out.println("当前使用的分词器:" + analyzer.getClass());
 
              TokenStream tokenStream = analyzer.tokenStream("content", new StringReader(text));
              tokenStream.addAttribute(TermAttribute.class);
 
              while (tokenStream.incrementToken()) {
                     TermAttribute termAttribute = tokenStream.getAttribute(TermAttribute.class);
                     System.out.println(termAttribute.term());
              }
       }
}

  

3. 如何扩展词库:很多情况下,我们可能需要定制自己的词库,例如 XXX 公司,我们希望这能被分词器识别,并拆分成一个词。

   IKAnalyzer 可以很方便的实现我们的这种需求。

   新建 IKAnalyzer.cfg.xml

     view plaincopy to clipboardprint
?
<?xml version="1.0" encoding="UTF-8"?>  
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">    
<properties>    
       
<!-- 1,文件要是 UTF-8 编码。2,一行写一个词 -->  
       
<!--用户可以在这里配置自己的扩展字典-->  
       
<entry key="ext_dict">/mydict.dic</entry>  
</properties>  
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> 
<properties> 
       
<!-- 1,文件要是 UTF-8 编码。2,一行写一个词 -->
       
<!--用户可以在这里配置自己的扩展字典-->
       
<entry key="ext_dict">/mydict.dic</entry>
</properties> 

       

       解析:

               
<entry key="ext_dict">/mydict.dic</entry> 扩展了一个自己的词典,名字叫 mydict.dic

               因此我们要建一个文本文件,名为:mydict.dic  (此处使用的 .dic 并非必须)

               在这个文本文件里写入:

                    北京XXXX科技有限公司

               这样就添加了一个词汇。

               如果要添加多个,则新起一行:

                    词汇一

                    词汇二

                    词汇三

                    

               需要注意的是,这个文件一定要使用 UTF
-8编码

 

4. 停用词:

    有些词在文本中出现的频率非常高,但是对文本所携带的信息基本不产生影响,例如英文的
"a、an、the、of",或中文的"的、了、着",以及各种标点符号等,这样的词称为停用词(stop word)。

    文本经过分词之后,停用词通常被过滤掉,不会被进行索引。在检索的时候,用户的查询中如果含有停用词,检索系统也会将其过滤掉(因为用户输入的查询字符串也要进行分词处理)。

    排除停用词可以加快建立索引的速度,减小索引库文件的大小。

    IKAnalyzer 中自定义停用词也非常方便,和配置 
"扩展词库" 操作类型,只需要在 IKAnalyzer.cfg.xml 加入如下配置:

       
<entry key="ext_stopwords">/ext_stopword.dic</entry> 

       同样这个配置也指向了一个文本文件 
/ext_stopword.dic (后缀名任意),格式如下:

           也

          了

          仍

          从

          

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页