手把手带你本地构建自己的RAG模型

        对于大模型而言,为了增强模型在特定领域的性能,常见的做法有基于rag和finetune两种模式,当数据量较小时,一般采用前者,这样能保证模型的效果且成本小。而finetune的方式也有很多,比如sft,lora等。下面对第一种方式进行如下总结:

(1)前期准备

       本文主要采用的技术框架是langchain+milvus+ollama,那么首先这几种工具得提前安装配置好。至于怎么安装配置这里不做过多赘述,前面博客和网上资料很多。

###拉取模型
ollama pull qwen2.5:1.5b


###安装基本需要的库
pip install langchain pypdf pymilvus

base大模型采用的是qwen2.5:1.5b,如果觉得设备支持可以切换其他模型。下面示例测试采用的是随机生成的一个关于“张三”的pdf文档格式,可以随意替换。

标题:《孤崖遗风》

在古老的华夏大陆,有一个被群山环抱的小村庄,名叫青松村。村子里住着一个名叫张三的少年,他无父无母,自小与爷爷相依为命。张三的爷爷是个慈祥的老人,以采药为生,对张三呵护备至,教他做人的道理和一些基本的草药知识。

张三虽然出身贫寒,却生性善

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值