对于大模型而言,为了增强模型在特定领域的性能,常见的做法有基于rag和finetune两种模式,当数据量较小时,一般采用前者,这样能保证模型的效果且成本小。而finetune的方式也有很多,比如sft,lora等。下面对第一种方式进行如下总结:
(1)前期准备
本文主要采用的技术框架是langchain+milvus+ollama,那么首先这几种工具得提前安装配置好。至于怎么安装配置这里不做过多赘述,前面博客和网上资料很多。
###拉取模型
ollama pull qwen2.5:1.5b
###安装基本需要的库
pip install langchain pypdf pymilvus
base大模型采用的是qwen2.5:1.5b,如果觉得设备支持可以切换其他模型。下面示例测试采用的是随机生成的一个关于“张三”的pdf文档格式,可以随意替换。
标题:《孤崖遗风》
在古老的华夏大陆,有一个被群山环抱的小村庄,名叫青松村。村子里住着一个名叫张三的少年,他无父无母,自小与爷爷相依为命。张三的爷爷是个慈祥的老人,以采药为生,对张三呵护备至,教他做人的道理和一些基本的草药知识。
张三虽然出身贫寒,却生性善
订阅专栏 解锁全文
1435

被折叠的 条评论
为什么被折叠?



