Scala之函数式编程

1. 函数式编程

  • Spark/Flink的大量业务代码都会使用到函数式编程。
1.1 遍历 - foreach
  • 方法描述

    foreach(f: (A) ⇒ Unit): Unit
    
  • 方法说明

    foreachAPI说明
    参数f: (A) ⇒ Unit接收一个函数对象
    函数的输入参数为集合的元素
    返回值为空
    返回值Unit
  • 方法实操

scala> val list=List(1,2,3,4)
list: List[Int] = List(1, 2, 3, 4)

//定义一个匿名函数传入到foreach方法中
scala> list.foreach((x:Int)=>println(x))
1
2
3
4

//匿名函数的输入参数类型可以省略,由编译器自动推断
scala> list.foreach(x=>println(x))
1
2
3
4

//当函数参数,只在函数体中出现一次,而且函数体没有嵌套调用时,可以使用下划线来简化函数定 义
scala> list.foreach(println(_))
1
2
3
4

//最简写,直接给定println
scala> list.foreach(println)
1
2
3
4

1.2 映射 - map
  • 集合的映射操作是将来在编写Spark/Flink用得最多的操作,是我们必须要掌握的。

  • 方法描述

def map[B](f: (A) ⇒ B): TraversableOnce[B]
  • 方法说明
map方法API说明
泛型[B]指定map方法最终返回的集合泛型
参数f: (A) ⇒ B传入一个函数对象
该函数接收一个类型A(要转换的列表元素)
返回值为类型B
返回值TraversableOnce[B]B类型的集合
  • 方法实操
//定义一个list集合,实现把内部每一个元素做乘以10,生成一个新的list集合
scala> val list=List(1,2,3,4)
list: List[Int] = List(1, 2, 3, 4)

//定义一个匿名函数
scala> list.map((x:Int)=>x*10)
res21: List[Int] = List(10, 20, 30, 40)

//省略匿名函数参数类型
scala> list.map(x=>x*10)
res22: List[Int] = List(10, 20, 30, 40)

//最简写   用下划线
scala> list.map(_*10)
res23: List[Int] = List(10, 20, 30, 40)
1.3 扁平化映射 - flatmap
  • 映射扁平化也是用得非常多的操作,也是必须要掌握的。
  • 方法描述
def flatMap[B](f: (A) ⇒ GenTraversableOnce[B]): TraversableOnce[B]
  • 方法说明
flatmap方法API说明
泛型[B]最终要转换的集合元素类型
参数f: (A) ⇒ GenTraversableOnce[B]传入一个函数对象
函数的参数是集合的元素
函数的返回值是一个集合
返回值TraversableOnce[B]B类型的集合
  • 方法实操
//定义一个List集合,每一个元素中就是一行数据,有很多个单词
scala>  val list = List("hadoop hive spark flink", "hbase spark")
list: List[String] = List(hadoop hive spark flink, hbase spark)

//使用flatMap进行偏平化处理,获取得到所有的单词
scala> list.flatMap(x => x.split(" "))
res24: List[String] = List(hadoop, hive, spark, flink, hbase, spark)

//简写
scala> list.flatMap(_.split(" "))
res25: List[String] = List(hadoop, hive, spark, flink, hbase, spark)

// flatMap该方法其本质是先进行了map 然后又调用了flatten
scala> list.map(_.split(" ")).flatten
res26: List[String] = List(hadoop, hive, spark, flink, hbase, spark)
1.4 过滤 - filter
  • 过滤符合一定条件的元素
  • 方法描述
def filter(p: (A) ⇒ Boolean): TraversableOnce[A]
  • 方法说明
filter方法API说明
参数p: (A) ⇒ Boolean传入一个函数对象
接收一个集合类型的参数
返回布尔类型,满足条件返回true, 不满足返回false
返回值TraversableOnce[A]列表
  • 方法实操
//定义一个list集合
scala> val list=List(1,2,3,4,5,6,7,8,9,10)
list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

//过滤出集合中大于5的元素
scala> list.filter(x => x >5)
res27: List[Int] = List(6, 7, 8, 9, 10)

//把集合中大于5的元素取出来乘以10生成一个新的list集合
scala> list.filter(_ > 5).map(_ * 10)
res29: List[Int] = List(60, 70, 80, 90, 100)


//通过这个案例,应该是可以感受到scala比java的强大了...
1.5 排序 - sort
  • 在scala集合中,可以使用以下几种方式来进行排序
    • sorted默认排序
    • sortBy指定字段排序
    • sortWith自定义排序
  • sorted默认排序
//定义一个List集合
scala> val list=List(5,1,2,4,3)
list: List[Int] = List(5, 1, 2, 4, 3)

//默认就是升序
scala> list.sorted
res30: List[Int] = List(1, 2, 3, 4, 5)
  • sortBy指定字段排序

    • 根据传入的函数转换后,再进行排序
    • 方法描述
    def sortBy[B](f: (A) ⇒ B): List[A]
    
    • 方法说明
    sortBy方法API说明
    泛型[B]按照什么类型来进行排序
    参数f: (A) ⇒ B传入函数对象
    接收一个集合类型的元素参数
    返回B类型的元素进行排序
    返回值List[A]返回排序后的列表
    • 方法实操
    //定义一个List集合
    scala> val list=List("1 hadoop","2 spark","3 flink")
    list: List[String] = List(1 hadoop, 2 spark, 3 flink)
    
    //按照单词的首字母进行排序
    scala> list.sortBy(x=>x.split(" ")(1))
    res33: List[String] = List(3 flink, 1 hadoop, 2 spark)
    
  • sortWith自定义排序

    • 自定义排序,根据一个函数来进行自定义排序
    • 方法描述
    def sortWith(lt: (A, A) ⇒ Boolean): List[A]
    
    • 方法说明
    sortWith方法API说明
    参数lt: (A, A) ⇒ Boolean传入一个比较大小的函数对象
    接收两个集合类型的元素参数
    返回两个元素大小,小于返回true,大于返回false
    返回值List[A]返回排序后的列表
    • 方法实操
    scala> val list = List(2,3,1,6,4,5)
    a: List[Int] = List(2, 3, 1, 6, 4, 5)
    
    //降序
    scala> list.sortWith((x,y)=>x>y)
    res35: List[Int] = List(6, 5, 4, 3, 2, 1)
    
    //升序
    scala> list.sortWith((x,y)=>x<y)
    res36: List[Int] = List(1, 2, 3, 4, 5, 6)
    
1.6 分组 - groupBy
  • 我们如果要将数据按照分组来进行统计分析,就需要使用到分组方法
  • groupBy表示按照函数将列表分成不同的组
  • 方法描述
def groupBy[K](f: (A) ⇒ K): Map[K, List[A]]
  • 方法说明
groupBy方法API说明
泛型[K]分组字段的类型
参数f: (A) ⇒ K传入一个函数对象
接收集合元素类型的参数
返回一个K类型的key,这个key会用来进行分组,相同的key放在一组中
返回值Map[K, List[A]]返回一个映射,K为分组字段,List为这个分组字段对应的一组数据
  • 方法实操
scala> val a = List("张三"->"男", "李四"->"女", "王五"->"男")
a: List[(String, String)] = List((张三,男), (李四,女), (王五,男))

// 按照性别分组
scala> a.groupBy(_._2)
res0: scala.collection.immutable.Map[String,List[(String, String)]] = Map(男 -> List((张三,男), (王五,男)),
女 -> List((李四,女)))

// 将分组后的映射转换为性别/人数元组列表
scala> res0.map(x => x._1 -> x._2.size)
res3: scala.collection.immutable.Map[String,Int] = Map(男 -> 2, 女 -> 1)
1.7 聚合 - reduce
  • reduce表示将列表,传入一个函数进行聚合计算
  • 方法描述
def reduce[A1 >: A](op: (A1, A1) ⇒ A1): A1
  • 方法说明
reduce方法API说明
泛型[A1 >: A](下界)A1必须是集合元素类型的子类
参数op: (A1, A1) ⇒ A1传入函数对象,用来不断进行聚合操作
第一个A1类型参数为:当前聚合后的变量
第二个A1类型参数为:当前要进行聚合的元素
返回值A1列表最终聚合为一个元素
  • 方法实操
scala> val a = List(1,2,3,4,5,6,7,8,9,10)
a: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> a.reduce((x,y) => x + y)
res5: Int = 55

// 第一个下划线表示第一个参数,就是历史的聚合数据结果
// 第二个下划线表示第二个参数,就是当前要聚合的数据元素
scala> a.reduce(_ + _)
res53: Int = 55

// 与reduce一样,从左往右计算
scala> a.reduceLeft(_ + _)
res0: Int = 55

// 从右往左聚合计算
scala> a.reduceRight(_ + _)
res1: Int = 55
1.8 折叠 - fold
  • fold与reduce很像,但是多了一个指定初始值参数
  • 方法描述
def fold[A1 >: A](z: A1)(op: (A1, A1) ⇒ A1): A1
  • 方法说明
reduce方法API说明
泛型[A1 >: A](下界)A1必须是集合元素类型的子类
参数1z: A1初始值
参数2op: (A1, A1) ⇒ A1传入函数对象,用来不断进行折叠操作
第一个A1类型参数为:当前折叠后的变量
第二个A1类型参数为:当前要进行折叠的元素
返回值A1列表最终折叠为一个元素
  • 方法实操
//定义一个List集合
scala> val a = List(1,2,3,4,5,6,7,8,9,10)
a: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

//求和
scala> a.sum
res41: Int = 55

//给定一个初始值,,折叠求和
scala> a.fold(0)(_+_)
res42: Int = 55

scala> a.fold(10)(_+_)
res43: Int = 65

//从左往右
scala> a.foldLeft(10)(_+_)
res44: Int = 65

//从右往左
scala> a.foldRight(10)(_+_)
res45: Int = 65


//fold和foldLet效果一致,表示从左往右计算
//foldRight表示从右往左计算

2. 高阶函数

  • 使用函数值作为参数,或者返回值为函数值的“函数”和“方法”,均称之为“高阶函数”。
2.1 函数值作为参数
//定义一个数组
scala> val array=Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)

//定义一个函数
scala> val func=(x:Int)=>x*10
func: Int => Int = <function1>

//函数作为参数传递到方法中
scala> array.map(func)
res0: Array[Int] = Array(10, 20, 30, 40, 50)
2.2 匿名函数
//定义一个数组
scala> val array=Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)

//定义一个没有名称的函数----匿名函数
scala> array.map(x=>x*10)
res1: Array[Int] = Array(10, 20, 30, 40, 50)
2.3 柯里化
  • 方法可以定义多个参数列表,当使用较少的参数列表调用多参数列表的方法时,会产生一个新的函数,该函数接收剩余的参数列表作为其参数。这被称为柯里化
def getAddress(a:String):(String,String)=>String={
    (b:String,c:String)=>a+"-"+b+"-"+c
}

scala> val f1=getAddress("china")
f1: (String, String) => String = <function2>

scala> f1("beijing","tiananmen")
res5: String = china-beijing-tiananmen



//这里就可以这样去定义方法
def getAddress(a:String)(b:String,c:String):String={ 
  		a+"-"+b+"-"+c 
}
//调用
scala> getAddress("china")("beijing","tiananmen")
res0: String = china-beijing-tiananmen

//之前学习使用的下面这些操作就是使用到了柯里化
List(1,2,3,4).fold(0)(_+_)
List(1,2,3,4).foldLeft(0)(_+_)
List(1,2,3,4).foldRight(0)(_+_)
2.4 闭包
  • 函数里面引用外面类成员变量叫作闭包
var factor=10

val f1=(x:Int) => x*factor


//定义的函数f1,它的返回值是依赖于不在函数作用域的一个变量
//后期必须要要获取到这个变量才能执行
//spark和flink程序的开发中大量的使用到函数,函数的返回值依赖的变量可能都需要进行大量的网络传输获取得到。这里就需要这些变量实现序列化进行网络传输。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值