素数与素性测试(Miller-Rabin测试)(目前为止我见过最好的博客)

原地址(原地址比我好了100倍):https://www.cnblogs.com/Norlan/p/5350243.html
以下是原文:

转载自Matrix大牛的博客 把代码翻译成C++
http://www.matrix67.com/blog/archives/234
题目链接:
http://hihocoder.com/problemset/problem/1287
  一

  1. 素数的个数无限多(不存在最大的素数)

  2. 存在任意长的一段连续数,其中的所有数都是合数(相邻素数之间的间隔任意大)

  3. 所有大于2的素数都可以唯一地表示成两个平方数之差。

  4. 当n为大于2的整数时,2n+1和2n-1两个数中,如果其中一个数是素数,那么另一个数一定是合数。

  5. 如果p是素数,a是小于p的正整数,那么a^(p-1) mod p = 1。

叫做Fermat小定理(Fermat’s Little Theorem)。Euler对这个定理进行了推广,叫做Euler定理。Euler一生的定理太多了,为了和其它的“Euler定理”区别开来,有些地 方叫做Fermat小定理的Euler推广。Euler定理中需要用一个函数f(m),它表示小于m的正整数中有多少个数和m互素(两个数只有公约数1称 为互素)。为了方便,我们通常用记号φ(m)来表示这个函数(称作Euler函数)。Euler指出,如果a和m互素,那么a^φ(m) ≡ 1 (mod m)。可以看到,当m为素数时,φ(m)就等于m-1(所有小于m的正整数都与m互素),因此它是Fermat小定理的推广。定理的证明和Fermat小 定理几乎相同,只是要考虑的式子变成了所有与m互素的数的乘积:m_1 * m_2 … m_φ(m) ≡ (a * m_1)(a * m_2) … (a * m_φ(m)) (mod m)。我为什么要顺便说一下Euler定理呢?因为下面一句话可以增加我网站的PV:这个定理出现在了The Hundred Greatest Theorems里。
谈到Fermat小定理,数学历史上有很多误解。很长一段时间里,人们都认为Fermat小定理的逆命题是正确的,并且有人亲自验证了 a=2, p<300的所有情况。国外甚至流传着一种说法,认为中国在孔子时代就证明了这样的定理:如果n整除2^(n-1)-1,则n就是素数。后来某个英 国学者进行考证后才发现那是因为他们翻译中国古文时出了错。1819年有人发现了Fermat小定理逆命题的第一个反例:虽然2的340次方除以341余 1,但341=1131。后来,人们又发现了561, 645, 1105等数都表明a=2时Fermat小定理的逆命题不成立。虽然这样的数不多,但不能忽视它们的存在。于是,人们把所有能整除2^(n-1)-1的合 数n叫做伪素数(pseudoprime),意思就是告诉人们这个素数是假的。
不满足2^(n-1) mod n = 1的n一定不是素数;如果满足的话则多半是素数。这样,一个比试除法效率更高的素性判断方法出现了:制作一张伪素数表,记录某个范围内的所有伪素数,那么 所有满足2^(n-1) mod n = 1且不在伪素数表中的n就是素数。之所以这种方法更快,是因为我们可以使用二分法快速计算2^(n-1) mod n 的值,这在计算机的帮助下变得非常容易;在计算机中也可以用二分查找有序数列、Hash表开散列、构建Trie树等方法使得查找伪素数表效率更高。
有 人自然会关心这样一个问题:伪素数的个数到底有多少?换句话说,如果我只计算2^(n-1) mod n的值,事先不准备伪素数表,那么素性判断出错的概率有多少?研究这个问题是很有价值的,毕竟我们是OIer,不可能背一个长度上千的常量数组带上考场。 统计表明,在前10亿个自然数中共有50847534个素数,而满足2^(n-1) mod n = 1的合数n有5597个。这样算下来,算法出错的可能性约为0.00011。这个概率太高了,如果想免去建立伪素数表的工作,我们需要改进素性判断的算 法。
最简单的想法就是,我们刚才只考虑了a=2的情况。对于式子a^(n-1) mod n,取不同的a可能导致不同的结果。一个合数可能在a=2时通过了测试,但a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足 a^(n-1) mod n = 1的合数n叫做以a为底的伪素数(pseudoprime to base a)。前10亿个自然数中同时以2和3为底的伪素数只有1272个,这个数目不到刚才的1/4。这告诉我们如果同时验证a=2和a=3两种情况,算法出错 的概率降到了0.000025。容易想到,选择用来测试的a越多,算法越准确。通常我们的做法是,随机选择若干个小于待测数的正整数作为底数a进行若干次 测试,只要有一次没有通过测试就立即把这个数扔回合数的世界。这就是Fermat素性测试。
人们自然会想,如果考虑了所有小于n的底数a,出错的概率是否就可以降到0呢?没想 到的是,居然就有这样的合数,它可以通过所有a的测试(这个说法不准确,详见我在地核楼层的回复)。Carmichael第一个发现这样极端的伪素数,他 把它们称作Carmichael数。你一定会以为这样的数一定很大。错。第一个Carmichael数小得惊人,仅仅是一个三位数,561。前10亿个自 然数中Carmichael数也有600个之多。Carmichael数的存在说明,我们还需要继续加强素性判断的算法。
Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了传说中的Miller-Rabin素性测试算法。 新的测试基于下面的定理:如果p是素数,x是小于p的正整数,且x^2 mod p = 1,那么要么x=1,要么x=p-1。这是显然的,因为x^2 mod p = 1相当于p能整除x^2-1,也即p能整除(x+1)(x-1)。由于p是素数,那么只可能是x-1能被p整除(此时x=1)或x+1能被p整除(此时 x=p-1)。
我们下面来演示一下上面的定理如何应用在Fermat素性测试上。前面说过341可以通过以2为底的Fermat测试,因 为2^340 mod 341=1。如果341真是素数的话,那么2^170 mod 341只可能是1或340;当算得2^170 mod 341确实等于1时,我们可以继续查看285除以341的结果。我们发现,285 mod 341=32,这一结果摘掉了341头上的素数皇冠,面具后面真实的嘴脸显现了出来,想假扮素数和我的素MM交往的企图暴露了出来。
这就 是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d
2^r(其中d是一个奇数)。那么我们需要计算的东西就 变成了a的d2r次方除以n的余数。于是,a(d * 2(r-1))要么等于1,要么等于n-1。如果a(d * 2(r-1))等于1,定理继续适用于a(d * 2(r-2)),这样不断开方开下去,直到对于某个i满足a(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:
尽可能提取因子2, 把n-1表示成d
2r,如果n是一个素数,那么或者ad mod n=1,或者存在某个i使得a(d*2i) mod n=n-1 ( 0<=i<r ) (注意i可以等于0,这就把a^d mod n=n-1的情况统一到后面去了)
Miller-Rabin 素性测试同样是不确定算法,我们把可以通过以a为底的Miller-Rabin测试的合数称作以a为底的强伪素数(strong pseudoprime)。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。
Miller- Rabin算法的代码也非常简单:计算d和r的值(可以用位运算加速),然后二分计算a^d mod n的值,最后把它平方r次。程序的代码比想像中的更简单,我写一份放在下边。虽然我已经转C了,但我相信还有很多人看不懂C语言。我再写一次Pascal 吧。函数IsPrime返回对于特定的底数a,n是否是能通过测试。如果函数返回False,那说明n不是素数;如果函数返回True,那么n极有可能是 素数。注意这个代码的数据范围限制在longint,你很可能需要把它们改成int64或高精度计算(java)。

1 #include
2 using namespace std ;
3 #define rd(x) (rand()%(x))
4 typedef unsigned long long ll;
5
6 ll pow_mod(ll a,ll b,ll r)
7 {
8 ll ans=1,buff=a;
9 while(b)
10 {
11 if(b&1)
12 ans=(ansbuff)%r;
13 buff=(buff
buff)%r;
14 b>>=1;
15 }
16 return ans;
17 }
18
19 bool test(ll n,ll a,ll d)
20 {
21 if(n2) return true;
22 if(n
a) return false;
23 if(!(n&1)) return false;
24 while(!(d&1)) d>>=1;
25 ll t = pow_mod(a,d,n);
26 while(d!=n-1&&t!=n-1&&t!=1){
27 t = t*t%n;//下面介绍防止溢出的办法,对应数据量为10^18次方;
28 d<<=1;
29 }
30 return t == n-1||(d&1)1;//要么t能变成n-1,要么一开始t就等于1
31 }
32
33 bool isprime(ll n)
34 {
35 int a[] = {2,3,5,7};//或者自己生成[2,N-1]以内的随机数rand()%(n-2)+2
36 for(int i = 0; i <= 3; ++i){
39 if(n
a[i]) return true;
40 if(!test(n,a[i],n-1)) return false;
41 }
42 return true;
43 }
44 int main()
45 {
46 int t,ans=0;
47 ll N;
48 for(cin >> t;t;t–){
49 cin >> N;
50 cout << ((isprime(N))?“Yes”:“No”) <<endl;
51 }
52 }

对 于大数的素性判断,目前Miller-Rabin算法应用最广泛。一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果 被测数小于4 759 123 141,那么只需要测试三个底数2, 7和61就足够了。当然,你测试的越多,正确的范围肯定也越大。如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么10^16内唯一的强伪素数为46 856 248 255 981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取 k个底数进行测试算法的失误率大概为4^(-k)。

后记:
注意上述算法中的幂运算是longlong类型,longlong×longlong肯定会出现溢出现象,如果不会java大整数,手里也没有大整数乘法的模板
有一个小技巧可以避免溢出,方法就是乘法改为加法,把上面的代码:

按 Ctrl+C 复制代码

按 Ctrl+C 复制代码

改为:

long long mod_mul(long long a, long long b, long long n) {
long long res = 0;
while (b) {
if(b & 1)
res = (res + a) % n;
a = (a + a) % n;
b >>= 1;
}
return res;
}

long long pow_mod(long long a, long long b, long long n) {
long long res = 1;
while(b) {
if(b & 1)
res = mod_mul(res, a, n);
a = mod_mul(a, a, n);
b >>= 1;
}
return res;
}

就可以避免大整数,当然,复杂度也相应提高了一些。
转载自Matrix大牛的博客 把代码翻译成C++
http://www.matrix67.com/blog/archives/234
题目链接:
http://hihocoder.com/problemset/problem/1287
  一个数是素数(也叫质数),当且仅当它的约数只有两个——1和它本身。规定这两个约数不能相同,因此1不是素数。对素数的研究属于数论范畴,你可以 看到许多数学家没事就想出一些符合某种性质的素数并称它为某某某素数。整个数论几乎就围绕着整除和素数之类的词转过去转过来。对于写代码的人来说,素数比 想像中的更重要,Google一下BigPrime或者big_prime你总会发现大堆大堆用到了素数常量的程序代码。平时没事时可以记一些素数下来以 备急用。我会选一些好记的素数,比如4567, 124567, 3214567, 23456789, 55566677, 1234567894987654321, 11111111111111111111111 (23个1)。我的手机号前10位是个素数。我的网站域名的ASCII码连起来(77 97 116 114 105 120 54 55 46 99 111 109)也是个素数。
  素数有很多神奇的性质。我写5个在下面供大家欣赏。

  1. 素数的个数无限多(不存在最大的素数)
      证明:反证法,假设存在最大的素数P,那么我们可以构造一个新的数2 * 3 * 5 * 7 * … * P + 1(所有的素数乘起来加1)。显然这个数不能被任一素数整除(所有素数除它都余1),这说明我们找到了一个更大的素数。
  2. 存在任意长的一段连续数,其中的所有数都是合数(相邻素数之间的间隔任意大)
      证明:当0<a<=n时,n!+a能被a整除。长度为n-1的数列n!+2, n!+3, n!+4, …, n!+n中,所有的数都是合数。这个结论对所有大于1的整数n都成立,而n可以取到任意大。
  3. 所有大于2的素数都可以唯一地表示成两个平方数之差。
       证明:大于2的素数都是奇数。假设这个 数是2n+1。由于(n+1)2=n2+2n+1,(n+1)2和n2就是我们要找的两个平方数。下面证明这个方案是唯一的。如果素数p能表示成 a2-b2,则p=a2-b2=(a+b)(a-b)。由于p是素数,那么只可能a+b=p且a-b=1,这给出了a和b的唯一解。
  4. 当n为大于2的整数时,2n+1和2n-1两个数中,如果其中一个数是素数,那么另一个数一定是合数。
       证明:2n不能被3整除。如果它被3除余1,那么2n-1就能被3整除;如果被3除余2,那么2n+1就能被3整除。总之,2n+1和2^n-1中至少有一个是合数。
  5. 如果p是素数,a是小于p的正整数,那么a^(p-1) mod p = 1。
      这个证明就有点麻烦了。
      首 先我们证明这样一个结论:如果p是一个素数的话,那么对任意一个小于p的正整数a,a, 2a, 3a, …, (p-1)a除以p的余数正好是一个1到p-1的排列。例如,5是素数,3, 6, 9, 12除以5的余数分别为3, 1, 4, 2,正好就是1到4这四个数。
      反证法,假如结论不成立的话,那么就是说有两个小于p的正整数m和n使得na和ma除以p的余数相同。不妨假设n>m,则p可以整除a(n-m)。但p是素数,那么a和n-m中至少有一个含有因子p。这显然是不可能的,因为a和n-m都比p小。
       用同余式表述,我们证明了:
      (p-1)! ≡ a * 2a * 3a * … * (p-1)a (mod p)
       也即:
      (p-1)! ≡ (p-1)! * a^(p-1) (mod p)
      两边同时除以(p-1)!,就得到了我们的最终结论:
      1 ≡ a^(p-1) (mod p)
    可惜最后这个定理最初不是我证明的。这是大数学家Fermat证明的,叫做Fermat小定理(Fermat’s Little Theorem)。Euler对这个定理进行了推广,叫做Euler定理。Euler一生的定理太多了,为了和其它的“Euler定理”区别开来,有些地 方叫做Fermat小定理的Euler推广。Euler定理中需要用一个函数f(m),它表示小于m的正整数中有多少个数和m互素(两个数只有公约数1称 为互素)。为了方便,我们通常用记号φ(m)来表示这个函数(称作Euler函数)。Euler指出,如果a和m互素,那么a^φ(m) ≡ 1 (mod m)。可以看到,当m为素数时,φ(m)就等于m-1(所有小于m的正整数都与m互素),因此它是Fermat小定理的推广。定理的证明和Fermat小 定理几乎相同,只是要考虑的式子变成了所有与m互素的数的乘积:m_1 * m_2 … m_φ(m) ≡ (a * m_1)(a * m_2) … (a * m_φ(m)) (mod m)。我为什么要顺便说一下Euler定理呢?因为下面一句话可以增加我网站的PV:这个定理出现在了The Hundred Greatest Theorems里。
    谈到Fermat小定理,数学历史上有很多误解。很长一段时间里,人们都认为Fermat小定理的逆命题是正确的,并且有人亲自验证了 a=2, p<300的所有情况。国外甚至流传着一种说法,认为中国在孔子时代就证明了这样的定理:如果n整除2^(n-1)-1,则n就是素数。后来某个英 国学者进行考证后才发现那是因为他们翻译中国古文时出了错。1819年有人发现了Fermat小定理逆命题的第一个反例:虽然2的340次方除以341余 1,但341=1131。后来,人们又发现了561, 645, 1105等数都表明a=2时Fermat小定理的逆命题不成立。虽然这样的数不多,但不能忽视它们的存在。于是,人们把所有能整除2^(n-1)-1的合 数n叫做伪素数(pseudoprime),意思就是告诉人们这个素数是假的。
    不满足2^(n-1) mod n = 1的n一定不是素数;如果满足的话则多半是素数。这样,一个比试除法效率更高的素性判断方法出现了:制作一张伪素数表,记录某个范围内的所有伪素数,那么 所有满足2^(n-1) mod n = 1且不在伪素数表中的n就是素数。之所以这种方法更快,是因为我们可以使用二分法快速计算2^(n-1) mod n 的值,这在计算机的帮助下变得非常容易;在计算机中也可以用二分查找有序数列、Hash表开散列、构建Trie树等方法使得查找伪素数表效率更高。
    有 人自然会关心这样一个问题:伪素数的个数到底有多少?换句话说,如果我只计算2^(n-1) mod n的值,事先不准备伪素数表,那么素性判断出错的概率有多少?研究这个问题是很有价值的,毕竟我们是OIer,不可能背一个长度上千的常量数组带上考场。 统计表明,在前10亿个自然数中共有50847534个素数,而满足2^(n-1) mod n = 1的合数n有5597个。这样算下来,算法出错的可能性约为0.00011。这个概率太高了,如果想免去建立伪素数表的工作,我们需要改进素性判断的算 法。
    最简单的想法就是,我们刚才只考虑了a=2的情况。对于式子a^(n-1) mod n,取不同的a可能导致不同的结果。一个合数可能在a=2时通过了测试,但a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足 a^(n-1) mod n = 1的合数n叫做以a为底的伪素数(pseudoprime to base a)。前10亿个自然数中同时以2和3为底的伪素数只有1272个,这个数目不到刚才的1/4。这告诉我们如果同时验证a=2和a=3两种情况,算法出错 的概率降到了0.000025。容易想到,选择用来测试的a越多,算法越准确。通常我们的做法是,随机选择若干个小于待测数的正整数作为底数a进行若干次 测试,只要有一次没有通过测试就立即把这个数扔回合数的世界。这就是Fermat素性测试。
    人们自然会想,如果考虑了所有小于n的底数a,出错的概率是否就可以降到0呢?没想 到的是,居然就有这样的合数,它可以通过所有a的测试(这个说法不准确,详见我在地核楼层的回复)。Carmichael第一个发现这样极端的伪素数,他 把它们称作Carmichael数。你一定会以为这样的数一定很大。错。第一个Carmichael数小得惊人,仅仅是一个三位数,561。前10亿个自 然数中Carmichael数也有600个之多。Carmichael数的存在说明,我们还需要继续加强素性判断的算法。
    Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了传说中的Miller-Rabin素性测试算法。 新的测试基于下面的定理:如果p是素数,x是小于p的正整数,且x^2 mod p = 1,那么要么x=1,要么x=p-1。这是显然的,因为x^2 mod p = 1相当于p能整除x^2-1,也即p能整除(x+1)(x-1)。由于p是素数,那么只可能是x-1能被p整除(此时x=1)或x+1能被p整除(此时 x=p-1)。
    我们下面来演示一下上面的定理如何应用在Fermat素性测试上。前面说过341可以通过以2为底的Fermat测试,因 为2^340 mod 341=1。如果341真是素数的话,那么2^170 mod 341只可能是1或340;当算得2^170 mod 341确实等于1时,我们可以继续查看285除以341的结果。我们发现,285 mod 341=32,这一结果摘掉了341头上的素数皇冠,面具后面真实的嘴脸显现了出来,想假扮素数和我的素MM交往的企图暴露了出来。
    这就 是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d
    2^r(其中d是一个奇数)。那么我们需要计算的东西就 变成了a的d2r次方除以n的余数。于是,a(d * 2(r-1))要么等于1,要么等于n-1。如果a(d * 2(r-1))等于1,定理继续适用于a(d * 2(r-2)),这样不断开方开下去,直到对于某个i满足a(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:
    尽可能提取因子2, 把n-1表示成d
    2r,如果n是一个素数,那么或者ad mod n=1,或者存在某个i使得a(d*2i) mod n=n-1 ( 0<=i<r ) (注意i可以等于0,这就把a^d mod n=n-1的情况统一到后面去了)
    Miller-Rabin 素性测试同样是不确定算法,我们把可以通过以a为底的Miller-Rabin测试的合数称作以a为底的强伪素数(strong pseudoprime)。第一个以2为底的强伪素数为2047。第一个以2和3为底的强伪素数则大到1 373 653。
    Miller- Rabin算法的代码也非常简单:计算d和r的值(可以用位运算加速),然后二分计算a^d mod n的值,最后把它平方r次。程序的代码比想像中的更简单,我写一份放在下边。虽然我已经转C了,但我相信还有很多人看不懂C语言。我再写一次Pascal 吧。函数IsPrime返回对于特定的底数a,n是否是能通过测试。如果函数返回False,那说明n不是素数;如果函数返回True,那么n极有可能是 素数。注意这个代码的数据范围限制在longint,你很可能需要把它们改成int64或高精度计算(java)。

1 #include
2 using namespace std ;
3 #define rd(x) (rand()%(x))
4 typedef unsigned long long ll;
5
6 ll pow_mod(ll a,ll b,ll r)
7 {
8 ll ans=1,buff=a;
9 while(b)
10 {
11 if(b&1)
12 ans=(ansbuff)%r;
13 buff=(buff
buff)%r;
14 b>>=1;
15 }
16 return ans;
17 }
18
19 bool test(ll n,ll a,ll d)
20 {
21 if(n2) return true;
22 if(n
a) return false;
23 if(!(n&1)) return false;
24 while(!(d&1)) d>>=1;
25 ll t = pow_mod(a,d,n);
26 while(d!=n-1&&t!=n-1&&t!=1){
27 t = t*t%n;//下面介绍防止溢出的办法,对应数据量为10^18次方;
28 d<<=1;
29 }
30 return t == n-1||(d&1)1;//要么t能变成n-1,要么一开始t就等于1
31 }
32
33 bool isprime(ll n)
34 {
35 int a[] = {2,3,5,7};//或者自己生成[2,N-1]以内的随机数rand()%(n-2)+2
36 for(int i = 0; i <= 3; ++i){
39 if(n
a[i]) return true;
40 if(!test(n,a[i],n-1)) return false;
41 }
42 return true;
43 }
44 int main()
45 {
46 int t,ans=0;
47 ll N;
48 for(cin >> t;t;t–){
49 cin >> N;
50 cout << ((isprime(N))?“Yes”:“No”) <<endl;
51 }
52 }

对 于大数的素性判断,目前Miller-Rabin算法应用最广泛。一般底数仍然是随机选取,但当待测数不太大时,选择测试底数就有一些技巧了。比如,如果 被测数小于4 759 123 141,那么只需要测试三个底数2, 7和61就足够了。当然,你测试的越多,正确的范围肯定也越大。如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么10^16内唯一的强伪素数为46 856 248 255 981。这样的一些结论使得Miller-Rabin算法在OI中非常实用。通常认为,Miller-Rabin素性测试的正确率可以令人接受,随机选取 k个底数进行测试算法的失误率大概为4^(-k)。

后记:
注意上述算法中的幂运算是longlong类型,longlong×longlong肯定会出现溢出现象,如果不会java大整数,手里也没有大整数乘法的模板
有一个小技巧可以避免溢出,方法就是乘法改为加法,把上面的代码:

按 Ctrl+C 复制代码

按 Ctrl+C 复制代码

改为:

long long mod_mul(long long a, long long b, long long n) {
long long res = 0;
while (b) {
if(b & 1)
res = (res + a) % n;
a = (a + a) % n;
b >>= 1;
}
return res;
}

long long pow_mod(long long a, long long b, long long n) {
long long res = 1;
while(b) {
if(b & 1)
res = mod_mul(res, a, n);
a = mod_mul(a, a, n);
b >>= 1;
}
return res;
}

就可以避免大整数,当然,复杂度也相应提高了一些。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Miller-Rabin素性测试算法是一种用于判断一个数是否为质数的算法。该算法基于费马小定理,使用随机数进行迭代运算,可以高效地判断一个数是否为质数。 具体来说,该算法将要判断的数记作n,随机选取一个小于n的正整数a,将a与n进行求模运算得到b。如果b等于0或者b等于n-1,则继续选择下一个a。否则,将b平方并对n取模,得到c。如果c等于1或者c等于n-1,则继续选择下一个a。否则,不断平方c并对n取模,直到c等于1或者迭代次数达到了一定阈值。如果c等于1,则n可能是一个合数;如果迭代过程中出现了c等于n-1的情况,则n很可能是一个质数。 为了提高判断的准确性,Miller-Rabin算法会进行多次随机迭代,每次选取不同的随机数a。随机迭代次数越多,判断结果的准确性越高,但计算时间也越长。 总之,Miller-Rabin素性测试算法是一种高效、准确的判断一个数是否为质数的算法,被广泛应用于密码学、计算机科学等领域。 ### 回答2: Miller-Rabin素性测试算法是一种用于判断一个数是否为素数的快速算法。该算法基于费马小定理,利用随机数的特性来判断一个数是否为素数。该算法的优势在于速度快且准确率高,同时能够应对大整数的素性测试。 该算法的具体步骤如下: 1. 首先确定待测试的数n,如果n为偶数,则直接判断n是否等于2,如果是则n为素数,因为2是最小的质数。 2. 若n为奇数,则写成n-1=2^r * d的形式,其中r为非负整数,d为奇数。 3. 接着随机选取一个整数a,且1 < a < n-1。计算a^d mod n,如果结果等于1或n-1,则可以认为n有很大的可能是素数,结束测试。 4. 若结果不等于1或n-1,则重复计算a^(2^j*d) mod n,直到出现下面两种情况之一:结果为1,或者出现了j=0,1,...,r-1时,结果为n-1。 5. 如果满足上述两种情况之一,则认为n有很大的可能是素数,结束测试。否则,重新随机选取一个a,重复上述操作进行测试。 需要说明的是,该算法的准确率可以通过多次测试进行提高。一般来说,重复进行10~20次检验,即可认为检验结果是正确的。 总之,Miller-Rabin素性测试算法是一种简单高效的素数测试算法,可以广泛应用于需要高精度计算的场合。它在加密、密码学等领域中,有着重要的应用价值。 ### 回答3: Miller-Rabin素性测试算法是一种用于判断一个数是否为素数的算法,名字来源于两位发明者:Gary L. Miller和Michael O. Rabin。与其它素数检测算法不同,Miller-Rabin素性测试算法有极高的概率能够正确地识别素数,其准确率可以达到误判的可能性小于$\frac{1}{4}$。 Miller-Rabin素性测试算法的基本原理是利用了费马小定理和欧拉判别法,即对于一个素数$p$和$a<p$,有$a^{p-1} \equiv 1 \pmod{p}$,而对于合数$n=pq$,其中$p,q$为大于1的素数,则在模n下,$a^{n-1} \equiv 1 \pmod{n}$,并且除了一些“小概率事件”外,$a^{(n-1)/2} \equiv \pm 1 \pmod{n}$。 Miller-Rabin 素性测试算法的流程如下: 1.将$n-1$分解成$2^sd$的形式,其中$d$是奇数。 2.对于给定的$a<n$,利用费马小定理,计算$a^d \pmod{n}$。 3.如果$a^d \equiv 1 \pmod{n}$,则认为$n$可能是一个素数,算法结束。 4.对于$0\leq r \leq s-1$,如果$a^{2^rd} \equiv -1 \pmod{n}$,则认为$n$可能是一个素数,算法结束。 5.如果$a^{2^sd} \not \equiv 1 \pmod{n}$或$a^{2^{r}d} \not \equiv -1 \pmod{n}$(其中$0\leq r \leq s-1$),则认为$n$不是素数,算法结束。 通过多次进行以上的步骤,可以提高算法的准确率。 Miller-Rabin素性测试算法是一种在计算机领域经常使用的算法,其特点是计算量较小、正确率较高、可扩展性好。在计算机安全领域,该算法被广泛地应用于RSA算法中,用于加密和解密数据。虽然该算法在某些情况下会出现一定的偏差,但是通过多次计算,可以达到一个非常高的准确率。因此,在实际应用中,Miller-Rabin素性测试算法是一个非常实用的工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值