小魏的修行路

Talk is cheap. Show me the code.

【Android】生成随机数

几种动态生成随机数的方法: 使用System#currentTimeMillis()获取一个当前时间毫秒数的long型数字 使用Random#nextInt(int n)产生一个0到n之间整数 使用Math#random()返回一个0到1之间的double值 使用ThreadLocalRa...

2018-10-17 21:48:42

阅读数:497

评论数:3

【计算机视觉】SIFT中LoG和DoG比较

在实际计算时,三种方法计算的金字塔组数noctaves,尺度空间坐标,以及每组金字塔内的层数S是一样的。同时,假设图像为640*480的标准图像。

2014-06-03 10:05:25

阅读数:27734

评论数:14

【图像处理】快速计算积分图

积分图是图像中十分常用的方法,最初是在Haar特征的快速计算中学到(参考博文:利用积分图像法快速计算Haar特征),后来发现在均值滤波,二值化等图像处理方法中也十分常见。积分图的简要介绍可以参考博文:利用积分图像法快速计算Haar特征,这里不再重复了。本篇主要是小记一下积分图的计算方法。由于积分图...

2014-01-06 21:39:56

阅读数:33268

评论数:30

【体系结构】转移预测器性能的定量评价

定量评价几种预测器:分支历史表预测器,相关分支预测器,Tournament预测器的预测准确率、

2013-07-26 13:21:47

阅读数:3591

评论数:3

【体系结构】转移预测器设计与比较

关联预测器,Tournament预测器,分支历史表预测器的设计与比较

2013-07-24 21:40:52

阅读数:6674

评论数:2

【模式识别】反向传播神经网络 BPNN

回顾感知器学习算法,其核心思想是梯度下降法,即以训练样本被错分的程度为目标函数,训练中每次出现错误时便使权系数朝着目标函数相对于权系数负梯度方向更新,知道目标中没有被错分的样本为止。而多层感知器模型中,神经元传递函数是阶跃函数,输出端的无耻只能对最后一个神经元系数求梯度,无法对其他权系数求梯度,所...

2013-06-04 16:45:16

阅读数:26456

评论数:6

【模式识别】多层感知器 MLP

由前面介绍看到,单个感知器能够完成线性可分数据的分类问题,是一种最简单的可以“学习”的机器。但他无法解决非线性问题。比如下图中的XOR问题:即(1,1)(-1,-1)属于同一类,而(1,-1)(-1,1)属于第二类的问题,不能由单个感知器正确分类。即在Minsky和Papert的专著《感知器》所分...

2013-06-03 02:04:18

阅读数:48220

评论数:4

【模式识别】最小平方误差判别 MSE

最小平方误差判别准则函数对于上一节提出的不等式组:在线性不可分的情况下,不等式组不可能同时满足。一种直观的想法就是,希望求一个a*使被错分的样本尽可能少。这种方法通过求解线性不等式组来最小化错分样本数目,通常采用搜索算法求解。为了避免求解不等式组,通常转化为方程组:矩阵形式为:。方程组的误差为:,...

2013-06-02 15:36:44

阅读数:20220

评论数:3

【模式识别】感知器 Perceptron

基本概念线性可分:在特征空间中可以用一个线性分界面正确无误地分开两 类样本;采用增广样本向量,即存 在合适的增广权向量 a 使得:则称样本是线性可分的。如下图中左图线性可分,右图不可分。所有满足条件的权向量称为解向量。权值空间中所有解向量组成的区域称为解区。通常对解区限制:引入余量b,要求解向量满...

2013-06-01 13:41:03

阅读数:24622

评论数:6

【OpenCV】基元检测 Primitive Detection

基元的概念 基元泛指图像中有特点的单元。常说的基元有:边缘、角点、斑点、直线段、圆、等 基元检测是图像分析的基础     边缘(Edge)检测 边缘是图像中像素灰度值发生剧烈变化而不连续的结果 边缘是赋予单个像素的一种性质,与图像函数在该像素的一个邻域内的梯度特性相关 边缘幅值:梯度的幅...

2013-03-19 14:20:09

阅读数:15675

评论数:3

【图像处理】利用循环移位实现描述子分类

听师姐提到一种特征描述子:对图像中每个3*3的块进行一定的处理,之后用矩阵外周8个像素表示此块,每个像素点有0和1两种状态。于是总共有2的8次方即256种状态。但通过一定的分类规则,可以把256种状态分为36种。比如以下两个图: 由于左图可以通过旋转变为右图,所以认为他们是同一种状态。 感觉这...

2013-03-01 19:43:57

阅读数:4358

评论数:1

【算法设计】约瑟夫环

本科系列课程参见:《软件学院那些课》 问题描述 约瑟夫(Joeph)问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。报m的人出列,将他的密码作为新...

2013-02-21 14:20:19

阅读数:10001

评论数:3

【算法设计】虎溪校园导游系统

本科课程参见:《软件学院那些课》 问题描述 设计一个校园导游程序, 为来访的客人提供信息查询服务。 基本要求 (1)设计学校的校园平面图,所含景点不少于10个,以图中顶点表示校内各景点,存放景点名称、代号、简介等信息,以边表示路径,存放路径长度等相关信息。 (2)为来访客人提供图中任...

2013-02-19 01:47:51

阅读数:11706

评论数:9

【数值分析】迭代法解方程:牛顿迭代法、Jacobi迭代法

本科课程参见:《软件学院那些课》 牛顿迭代公式 设已知方程f(x)=0的近似根x0 ,则在x0附近f(x)可用一阶泰勒多项式近似代替.因此, 方程f(x)=0可近似地表示为p(x)=0。用x1表示p(x)=0的根,它与f(x)=0的根差异不大.  设 ,由于x1满足解得 重复这...

2013-02-18 14:31:06

阅读数:70238

评论数:5

【数值分析】常微分方程数值解:欧拉公式

本科课程参见:《软件学院那些课》 算法原理 对于常微分方程初值问题 在求解区间[a,b]上作等距分割的剖分,步长,记。用数值微商的方法,即用差商近似微商数值求解常微分方程。 用向前差商近似 做出y(x)的在x=x0处的一阶向前差商式:  又,于是得到 ...

2013-02-18 14:10:23

阅读数:21585

评论数:1

【数值分析】微分求积:复化梯形、复化辛浦生

本科课程参见:《软件学院那些课》 复化梯形 将积分区间[a,b]划分n等分,步长,求积节点,在每个小区间上应用梯形公式 然后将它们累加求和,作为所求积分I的近似值. 记      式为复化梯形求积公式,下标n表示将区间n等分。 算法流程  算法代码...

2013-02-17 14:19:04

阅读数:13876

评论数:1

【数值分析】插值法:拉格朗日插值、牛顿插值

本科课程参见:《软件学院那些课》 拉格朗日插值法 (*以下定义选自维基百科) 算法流程图 算法代码 #include #include #include using namespace std; double Lagrange(int N,vector&...

2013-02-17 13:44:31

阅读数:49401

评论数:13

【图像处理】火灾尖角检测方法

在一些国内的论文中看到尖角检测方法,感觉有点类似以前学过的“种子填充”或者“扫描线”。 算法描述 按照从上到下,从左到右的顺序扫描整个二值图像。遇到像素为白色时不做任何标记,继续扫描下一像素;遇到黑色像素,则判断周围像素是否被标记的情况来决定本像素的标记情况。可分为4种情况: 若该像素的上...

2013-01-25 07:31:21

阅读数:6655

评论数:7

【3D】迭代最近点算法 Iterative Closest Points

研究生课程系列文章参见索引《在信科的那些课》 基本原理 假定已给两个数据集P、Q, ,给出两个点集的空间变换f使他们能进行空间匹配。这里的问题是,f为一未知函数,而且两点集中的点数不一定相同。解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points Algori...

2013-01-21 13:06:08

阅读数:41056

评论数:57

【3D】三维数据获取的运动恢复

研究生课程系列文章参见索引《在信科的那些课》 三维数据获取的运动恢复 三维数据配准(Registration):将在不同的视点采集到的三维数据记录到同一个物体基准坐标系中。 运动恢复(Motion Recovery):通过对数据(图像)序列的分析求解传感器的运动过程。 运动是生物视觉与机器视觉...

2012-12-31 17:13:04

阅读数:6074

评论数:1

提示
确定要删除当前文章?
取消 删除