小魏的修行路

Talk is cheap. Show me the code.

【模式识别】MPL,MIL和MCL

MIL和MPL是CV的大牛Boris Babenko at UC San Diego提出来的,其思想可以用下面一幅图概况。MIL是指一个对象的学习实例可能有很多种情况,学习的时候不是用一个精确的标注对象来学习,而是用一个对象的多个实例组成的“包”来学习;而MPL是指一个对象会有多个姿态(Pose)...

2014-07-07 10:26:29

阅读数:10307

评论数:8

【模式识别】SVM核函数

以下是几种常用的核函数表示:线性核(Linear Kernel)多项式核(Polynomial Kernel)径向基核函数(Radial Basis Function)也叫高斯核(Gaussian Kernel),因为可以看成如下核函数的领一个种形式:径向基函数是指取值仅仅依赖于特定点距离的实值函...

2014-06-30 14:40:11

阅读数:46691

评论数:9

【模式识别】Learning To Rank之RankBoost

RankBoost的思想比较简单,也是二元Learning to rank的常规思路:通过构造目标分类器,使得pair之间的对象存在相对大小关系。通俗点说,把对象组成一对对的pair,比如一组排序r1>r2>r3>r4,那可以构成pair:(r1,r2)(r1,r3),(r1,r...

2014-06-18 23:47:51

阅读数:17921

评论数:12

【计算机视觉】会议投稿相关推荐

一个call for paper的网站,small推荐给我的:http://www.wikicfp.com/cfp/可以添加自己关注的

2014-05-30 14:09:09

阅读数:7780

评论数:2

【模式识别】CART和GML AdaBoost MATLAB TOOLBOX

GML AdaBoost Matlab Toolbox是一款非常优秀的AdaBoost工具箱,内部实现了Real AdaBoost, Gentle AdaBoost和Modest AdaBoost三种方法。AdaBoost的训练和分类的结构都是相似的,可以参考前一篇《Boosting》,只简介一下...

2014-05-23 21:18:49

阅读数:16289

评论数:6

【模式识别】Boosting

分类中通常使用将多个弱分类器组合成强分类器进行分类的方法,统称为集成分类方法(Ensemble Method)。比较简单的如在Boosting之前出现Bagging的方法,首先从从整体样本集合中抽样采取不同的训练集训练弱分类器,然后使用多个弱分类器进行voting,最终的结果是分类器投票的优胜结果...

2014-05-17 21:04:49

阅读数:22865

评论数:7

【模式识别】K-近邻分类算法KNN

K-近邻(K-Nearest Neighbors, KNN)是一种很好理解的分类算法,简单说来就是从训练样本中找出K个与其最相近的样本,然后看这K个样本中哪个类别的样本多,则待判定的值(或说抽样)就属于这个类别。以下是KNN算法的步骤:计算已知类别数据集中每个点与当前点的距离;选取与当前点距离最小...

2014-04-15 20:19:35

阅读数:45850

评论数:15

【OpenCV】高斯混合背景建模

OpenCV中实现了两个版本的高斯混合背景/前景分割方法(Gaussian Mixture-based Background/Foreground Segmentation Algorithm)[1-3],调用接口很明朗,效果也很好。BackgroundSubtractorMOG 使用示例int ...

2014-04-14 17:40:45

阅读数:56191

评论数:18

【模式识别】OpenCV中使用神经网络 CvANN_MLP

OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),pre...

2013-06-05 09:43:11

阅读数:60422

评论数:33

【模式识别】反向传播神经网络 BPNN

回顾感知器学习算法,其核心思想是梯度下降法,即以训练样本被错分的程度为目标函数,训练中每次出现错误时便使权系数朝着目标函数相对于权系数负梯度方向更新,知道目标中没有被错分的样本为止。而多层感知器模型中,神经元传递函数是阶跃函数,输出端的无耻只能对最后一个神经元系数求梯度,无法对其他权系数求梯度,所...

2013-06-04 16:45:16

阅读数:26456

评论数:6

【模式识别】多层感知器 MLP

由前面介绍看到,单个感知器能够完成线性可分数据的分类问题,是一种最简单的可以“学习”的机器。但他无法解决非线性问题。比如下图中的XOR问题:即(1,1)(-1,-1)属于同一类,而(1,-1)(-1,1)属于第二类的问题,不能由单个感知器正确分类。即在Minsky和Papert的专著《感知器》所分...

2013-06-03 02:04:18

阅读数:48220

评论数:4

【模式识别】最小平方误差判别 MSE

最小平方误差判别准则函数对于上一节提出的不等式组:在线性不可分的情况下,不等式组不可能同时满足。一种直观的想法就是,希望求一个a*使被错分的样本尽可能少。这种方法通过求解线性不等式组来最小化错分样本数目,通常采用搜索算法求解。为了避免求解不等式组,通常转化为方程组:矩阵形式为:。方程组的误差为:,...

2013-06-02 15:36:44

阅读数:20220

评论数:3

【模式识别】感知器 Perceptron

基本概念线性可分:在特征空间中可以用一个线性分界面正确无误地分开两 类样本;采用增广样本向量,即存 在合适的增广权向量 a 使得:则称样本是线性可分的。如下图中左图线性可分,右图不可分。所有满足条件的权向量称为解向量。权值空间中所有解向量组成的区域称为解区。通常对解区限制:引入余量b,要求解向量满...

2013-06-01 13:41:03

阅读数:24622

评论数:6

【模式识别】基于图像处理和模式识别的火灾检测方法

学期末一直忙考试,大作业,很久没来CSDN耕耘了。。。 虽然考试都结束了,手头还是累积了不少活儿要补,不多写了,晒个小项目,之前一直做的,后来当做模式识别课程的大作业交了。 大体框架如下: 还是之前的火灾检测,但是在一些简单的颜色、运动检测的基础上增加了模式识别的方法。(其实并不需要这么多种...

2013-01-17 21:07:38

阅读数:17447

评论数:46

【数据降维】数据降维方法分类

数据降维基本原理是将样本点从输入空间通过线性或非线性变换映射到一个低维空间,从而获得一个关于原数据集紧致的低维表示。 数据降维工具箱drtoolbox中众多算法,这里简单做个分类。 因为很多并没有仔细了解,在此次只对八种方法做分类:主成分分析(Principal Component Analysi...

2012-04-29 15:48:48

阅读数:52802

评论数:15

【Matlab】数据降维工具箱drtoolbox

drttoolbox : Matlab Toolbox for Dimensionality Reduction是Laurens van der Maaten数据降维的工具箱。里面囊括了几乎所有的数据降维算法: - Principal Component Analysis ('PCA') - Li...

2012-04-26 17:25:04

阅读数:32879

评论数:56

提示
确定要删除当前文章?
取消 删除