【3D】迭代最近点算法 Iterative Closest Points

研究生课程系列文章参见索引《在信科的那些课

基本原理

假定已给两个数据集P、Q, ,给出两个点集的空间变换f使他们能进行空间匹配。这里的问题是,f为一未知函数,而且两点集中的点数不一定相同。解决这个问题使用的最多的方法是迭代最近点法(Iterative Closest Points Algorithm)。

基本思想是:根据某种几何特性对数据进行匹配,并设这些匹配点为假想的对应点,然后根据这种对应关系求解运动参数。再利用这些运动参数对数据进行变换。并利用同一几何特征,确定新的对应关系,重复上述过程。


迭代最近点法目标函数

三维空间中两个3D点, ,他们的欧式距离表示为:

三维点云匹配问题的目的是找到P和Q变化的矩阵R和T,对于 ,利用最小二乘法求解最优解使:

最小时的R和T。

数据预处理

实验中采集了五个面的点如下所示:
由于第一组(第一排第1个)和第三组(第一排第三个)采集均为模型正面点云,所以选用一和三做后续的实验。
首先利用Geomagic Studio中删除点的工具,去除原始数据中的一些隔离的噪点,效果如下:


平行移动和旋转的分离

先对平移向量T进行初始的估算,具体方法是分别得到点集P和Q的中心:
 
 
分别将点集P和Q平移至中心点处:

则上述最优化目标函数可以转化为:
 
最优化问题分解为:
  1. 求使E最小的 
  2. 求使 
平移中心点的 具体代码为:
//计算点云P的中心点mean
void CalculateMeanPoint3D(vector<Point3D> &P, Point3D &mean)
{
	vector<Point3D>::iterator it;
	mean.x = 0;
	mean.y = 0;
	mean.z = 0;
	for(it=P.begin(); it!=P.end(); it++){
		mean.x += it->x;
		mean.y += it->y;
		mean.z += it->z;
	}
	mean.x = mean.x/P.size();
	mean.y = mean.y/P.size();
	mean.z = mean.z/P.size();
}
初始平移效果如下:


利用控制点求初始旋转矩阵

在确定对应关系时,所使用的几何特征是空间中位置最近的点。这里,我们甚至不需要两个点集中的所有点。可以指用从某一点集中选取一部分点,一般称这些点为控制点(Control Points)。这时,配准问题转化为:
这里,pi,qi为最近匹配点。
在Geomagic Studio中利用三个点就可以进行两个模型的“手动注册”(感觉这里翻译的不好,Registration,应该为“手动匹配”)。


我们将手动选择的三个点导出,作为实验初始的控制点:


对于第i对点,计算点对的矩阵 Ai:
 
 ,的转置矩阵。
(*这里在査老师的课上给了一个错误的矩阵变换公式)
对于每一对矩阵Ai,计算矩阵B: 
double B[16];
		for(int i=0;i<16;i++)
			B[i]=0;
		for(itp=P.begin(),itq=Q.begin();itp!=P.end();itp++,itq++ ){
			double divpq[3]={itp->x,itp->y,itp->z};
			double addpq[3]={itp->x,itp->y,itp->z};
			double q[3]={itq->x,itq->y,itq->z};
			MatrixDiv(divpq,q,3,1);
			MatrixAdd(addpq,q,3,1);
			double A[16];
			for(int i=0;i<16;i++)
				A[i]=0;
			for(int i=0;i<3;i++){
				A[i+1]=divpq[i];
				A[i*4+4]=divpq[i];
				A[i+13]=addpq[i];
			}
			double AT[16],AMul[16];
			MatrixTran(A,AT,4,4);
			MatrixMul(A,AT,AMul,4,4,4,4);
			MatrixAdd(B,AMul,4,4);
		}

原最优化问题可以转为求B的最小特征值和特征向量,具体代码:
//使用奇异值分解计算B的特征值和特征向量
		double eigen, qr[4];
		MatrixEigen(B, &eigen, qr, 4);

//计算n阶正定阵m的特征值分解:eigen为特征值,q为特征向量
void MatrixEigen(double *m, double *eigen, double *q, int n)
{
	double *vec, *eig;
	vec = new double[n*n];
	eig = new double[n];
	CvMat _m = cvMat(n, n, CV_64F, m);
	CvMat _vec = cvMat(n, n, CV_64F, vec);
	CvMat _eig = cvMat(n, 1, CV_64F, eig);
	//使用OpenCV开源库中的矩阵操作求解矩阵特征值和特征向量
	cvEigenVV(&_m, &_vec, &_eig);
	*eigen = eig[0];
	for(int i=0; i<n; i++)
		q[i] = vec[i];
	delete[] vec;
	delete[] eig;
}

//计算旋转矩阵
void CalculateRotation(double *q, double *R)
{
	R[0] = q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3];
	R[1] = 2.0 * (q[1]*q[2] - q[0]*q[3]);
	R[2] = 2.0 * (q[1]*q[3] + q[0]*q[2]);
	R[3] = 2.0 * (q[1]*q[2] + q[0]*q[3]);
	R[4] = q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3];
	R[5] = 2.0 * (q[2]*q[3] - q[0]*q[1]);
	R[6] = 2.0 * (q[1]*q[3] - q[0]*q[2]);
	R[7] = 2.0 * (q[2]*q[3] + q[0]*q[1]);
	R[8] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];
}

平移矩阵计算

2.4中可以得到选择矩阵的4元数表示,由于在"平行移动和旋转的分离"中,我们将最优问题分解为:
  1. 求使E最小的 
  2. 求使 
因此还需要通过中心点计算平移矩阵。
//通过特征向量计算旋转矩阵R1和平移矩阵T1
		CalculateRotation(qr, R1);
		double mean_Q[3]={_mean_Q.x,_mean_Q.y,_mean_Q.z};
		double mean_P[3]={_mean_P.x,_mean_P.y,_mean_P.z};
		double meanT[3]={0,0,0};
		int nt=0;
		for(itp=P.begin(),itq=Q.begin();itp!=P.end();itp++,itq++ ){
			double tmpP[3]={itp->x,itp->y,itp->z};
			double tmpQ[3]={itq->x,itq->y,itq->z};
			double tmpMul[3];
			MatrixMul(R1, mean_P, tmpMul, 3, 3, 3, 1);
			MatrixDiv(tmpQ,tmpMul,3,1);
			MatrixAdd(meanT,tmpQ,3,1);
			nt++;
		}
		for(int i=0; i<3; i++)
			T1[i] = meanT[i]/(double)(nt);

一次旋转计算得到的矩阵如下:

效果在Geomagic Studio中显示如图:

迭代最近点

在初始匹配之后,所点集P`中所有点做平移变化,在比较点集合P`和Q`的匹配度,(或迭代次数)作为算法终止的条件。
具体为对点集P中每个点,找Q中离他最近的点作为对应点。在某一步利用前一步得到的,求使下述函数最小的
 
这里, 
//计算误差和d
		d = 0.0;
		if(round==1){
			FindClosestPointSet(data,P,Q);
		}
		int pcount=0;
		for(itp = P.begin(),itq=Q.begin();itp!=P.end(); itp++, itq++){
			double sum = (itp->x - itq->x)*(itp->x - itq->x) + (itp->y - itq->y)*(itp->y - itq->y) 
				+ (itp->z - itq->z)*(itp->z - itq->z);
			d += sum;
			pcount++;
		}
		d=d/(double)(pcount);

循环结束后能得到较好的匹配效果:

封装后的效果图:



没有更多推荐了,返回首页