【算法设计】虎溪校园导游系统

本科课程参见:《软件学院那些课

问题描述

设计一个校园导游程序, 为来访的客人提供信息查询服务。

基本要求

(1)设计学校的校园平面图,所含景点不少于10个,以图中顶点表示校内各景点,存放景点名称、代号、简介等信息,以边表示路径,存放路径长度等相关信息。
(2)为来访客人提供图中任意景点相关信息的查询;
(3)为来访客人提供从校门口到图中任意景点的问路查询;

算法思想

图的表示采用最基本的邻接矩阵的表示方式为,矩阵中A(i,j)值表示图中点i与j之间权值,A(i,i)记为0,若没有通路,记为infinity = 10000。忽略图数据结构实现中不必要的细节,只提供最基本的功能,包括
int get_count();//得到图中顶点数目;
void read(char* fname);
//从文件读入并设置图中顶点邻接矩阵权值;
void write();//输出临界矩阵
void set_distances(Vertex source, 
Weight distance[],Vertex ways[13][13]) const;	
//得到由指定点到图中各点最短路径及值

单源最短路径算法使用经典的Krim算法,首先初始化各点到源点的路径为直接路径,路径值为源点到各顶点权值。之后选取路径值最短的点(设为点k),并通过数组found[n]记录每个点是否被找到的信息。选取一个点之后遍历每个未找到的点,如果由源点经点k再到某点路径值短于原记录路径值,则更新源点到其路径为经过k,路径值为源点到k路径值加上k点到此点路径值,再选取新路径数组中路径值最短的点;重复操作直至图中所有的点都被找到。
template <class Weight, int graph_size>
void Digraph<Weight, graph_size>::set_distances(Vertex source,
                                        Weight distance[],Vertex ways[13][13]) const
//输出:数组array用以记录源点source到每个点的最短路径的值
//      二维数组ways用以记录源点到每个点最短路径所经过的点(即到达方式)
{
	Vertex v, w;
	bool found[graph_size]; // 存放找到的顶点
	Vertex minways[graph_size];//存放当前找到的最短路径的走法

	//初始化各个顶点的信息
	//每个顶点均为未找到,其最短路径开始设为源点直接到此点的路径,
	//走法为源点直接到此点
	for (v = 0; v < count; v++) {
		found[v] = false;
		distance[v] = adjacency[source][v];
		ways[v][0]=0;
		ways[v][1]=v;
		minways[v]=infinity;
		for(w=2;w<count;w++)
		ways[v][w]=infinity;
	}
	//初始化源点,默认其为找到点,最短路径为0
	found[source] = true; 
	distance[source] = 0;
	//最外层的循环每循环一次会找到一个顶点
	for (int i = 0; i < count-1; i++) { 
		
		Weight min = infinity;
		minways[0]=0;
		
		//此循环判断出当前还为被找到的顶点的最短路径
		//然后将此顶点设为已找到的点,其路径设为min,其走法设为minways
		//注意此处的关键是因为每次循环之后每个未找到点的“最短路径”都相应新的集合做了改变
		for (w = 0; w < count; w++){ if (!found[w])
			if (distance[w] < min) {
				v = w;
				min = distance[w];
				for(int j=0;j<count;j++)
					minways[j]=ways[v][j];
			}
		}
		found[v] = true;
		
		//此循环用以修改未找到的点的最短路径
		//如果在找到的点中min+刚找到的点到此点的路径小于原来的最短路径,
		//则改变最短路径的值以及最短走法
		//即刚新点后新的集合到点的路径优化原来的路径,则改变最短路径的值
		for (w = 0; w < count; w++) if (!found[w])
			if (min + adjacency[v][w] < distance[w]){
				distance[w] = min + adjacency[v][w];
				int a=0;
				while(minways[a]<infinity){
					ways[w][a]=minways[a];
					a++;
				}
				ways[w][a]=w;
			}
	}
}

单源最短路径Krim算法流程


对于界面,因为功能并不复杂,我们使用Ezwin类库。
实现思路很简单,首先生成一个以虎溪校园平面为背景的窗口,右侧为景点按钮,点击按钮会生成景点介绍的窗口,相应的按钮加载相应景点的介绍图片,同时原窗口加载路径图。
最好的程序未必用最复杂的代码,我们认为精简优于繁杂,实现目的是王道!我们的校园景点查询系统通篇代码只有200行左右!

模块划分

1、      classDigraph 定义图,其中单源最短路径算法最为其成员函数实现

2、      主函数中实现图的初始化及窗口的生成和事件的响应


数据结构

typedef int Vertex;
//infinity用以表示两路之间没有同路的值
const int infinity = 10000;

//创建Diagrah类表示图
template <class Weight, int graph_size>
class Digraph {
public:
	Digraph();
	void read(char* fname);
	void write();
	int get_count();
	void set_distances(Vertex source, Weight distance[],Vertex ways[13][13]) const;
protected:
	int count;   //图中点的数目
	Weight adjacency[graph_size][graph_size];//相邻点之间的权值
};

测试情况

1、打开程序
开始界面:

2、查询景点“图书馆”
显示景点介绍窗口,并同时在原路径图显示从北门到图书馆的最短路径


3、各景点路径详细信息


项目演示


(*点击图片可跳转到youku视频)



(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu 未经允许请勿用于商业用途)


没有更多推荐了,返回首页