说明:方阵的维度整体来看是偶数, 但是其实是一个奇数乘以一个偶数, 例6X6如, 其中6=2X3,我们也称这种方阵与单偶数方阵。
解法:如果您会解奇数魔术方阵, 要解这种方阵也就不难理解, 首先我们n=2(2m+1)令,并将整个方阵看作是数个奇数方阵的组合,如下所示:
首先依序将A、B 、C 、D四个位置,依奇数方阵的规则填入数字,填完之后,方阵中各行的和 就相同了,但列与对角线则否,此时必须在A-D与C- B 之间,作一些对应的调换,规则如下:
规则一:将A 中每一列(中间列除外)的头m个元素,与D中对应位置的元素调换。
规则二:将A 的中央列、中央那一格向左取m格,并与D中对应位置对调。
规则三:将C 中每一列的倒数m -1个元素,与B 中对应的元素对调。
举个实例来说,如何填6X6方阵,我们首先将之分解为奇数方阵,并填入数字,如下所示:
【待visio编辑】
接下来进行互换的动作,互换的元素以不同颜色标示,如下:
【待visio编辑】
由于m -1的数为0,所以在这个例子中,C-B部份并不用进行对调。
********************************************程序**********************************
#include <stdio.h>
#include <stdlib.h>
#define N 6
#define SWAP(x,y){int t; t = x; x = y; y = t;}
void magic_o(int[][N],int);
void exchange(int[][N],int);
int main(void){
int square[N][N]= {0};
int i, j;
magic_o(square,N/2);
exchange(square,N);
for(i = 0; i < N; i++){
for(j = 0; j < N; j++)
printf("%2d ", square[i][j]);
printf("\n");
}
return 0;
}
void magic_o(int square[][N],int n) {
int count,row, column;
row = 0;
column = n / 2;
for(count = 1; count <= n*n;count++){
square[row][column]= count; // 填A
square[row+n][column+n]= count + n*n; // 填B
square[row][column+n]= count + 2*n*n; // 填C
square[row+n][column]= count + 3*n*n; // 填D
if(count% n == 0)
row++;
else {
row = (row == 0) ? n - 1 : row - 1 ;
column = (column == n- 1)? 0 : column + 1;
}
}
}
void exchange(int x[][N],int n) {
int i, j;
int m = n / 4;
int m1 = m - 1;
for(i = 0; i < n/2;i++){
if(i != m) {
for(j = 0; j < m;j++) // 处理规则 1
SWAP(x[i][j],x[n/2+i][j]);
for(j = 0; j < m1;j++) // 处理规则 2
SWAP(x[i][n-1-j],x[n/2+i][n-1-j]);
}else { // 处理规则 3
for(j = 1; j <= m;j++)
SWAP(x[m][j],x[n/2+m][j]);
for(j = 0; j < m1;j++)
SWAP(x[m][n-1-j],x[n/2+m][n-1-j]);
}
}
}
*********************************************END**********************************