xiaoxiao_2446xuxu
码龄7年
求更新 关注
提问 私信
  • 博客:17,491
    社区:1
    17,492
    总访问量
  • 26
    原创
  • 4
    粉丝
  • 164
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
加入CSDN时间: 2018-06-29

个人简介:使生如夏花之洵烂,死如秋叶之静美

博客简介:

xiaoxiao_2446xuxu的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得14次评论
  • 获得19次收藏
创作历程
  • 5篇
    2022年
  • 2篇
    2021年
  • 7篇
    2020年
  • 1篇
    2019年
  • 13篇
    2018年
成就勋章
TA的专栏
  • 笔记
    1篇
  • pytorch
    1篇
  • 数据结构与算法
    1篇
  • CV-baseline
  • AlexNet
  • 论文
    2篇
  • 机器学习
    2篇
  • R语言
    1篇
  • 数据分析
    1篇
  • java
    5篇
  • 排序
  • html
    2篇
  • 基础
    2篇
  • input
    1篇
  • 多媒体
    2篇

TA关注的专栏 2

TA关注的收藏夹 0

TA关注的社区 6

TA参与的活动 0

创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

LeetCode-167-两数之和 II - 输入有序数组

文章目录LeetCode-167. 两数之和 II - 输入有序数组LeetCode-167. 两数之和 II - 输入有序数组给定一个已按照 升序排列 的整数数组 numbers ,请你从数组中找出两个数满足相加之和等于目标数 target 。函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。你可以假设每个输入只
原创
发布博客 2022.01.21 ·
207 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch-权值初始化

文章目录pytorch-权值初始化正常情况Xavier均匀分布Xavier标准正态分布Kaiming均匀分布Kaiming标准正态分布均匀分布正态分布常数分布正交矩阵初始化单位矩阵初始化稀疏矩阵初始化pytorch-权值初始化因为不恰当的权值初始化是会导致梯度爆炸,w的梯度会依赖于上一层的输出,输出非常小大,会引发梯度消失,爆炸。要严格控制网络输出值的尺度范围,不能太大,太小。正常情况# -*- coding: utf-8 -*-"""# @file name : grad_vanish_e
原创
发布博客 2022.01.20 ·
1220 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pytorch--torch.nn.functional学习网络中的池化层,全连接层和激活函数

pytorch--学习网络中的池化层,全连接层和激活函数池化层nn.MAXPool2d:功能是对二维信号进行最大池化nn.AvgPool2d:nn.MaxUnpool2d:反池化操作线性层nn.Linear激活函数nn.sigmoidnn.tanhnn.Relunn.LeaakyRelunn.PRelunn.RRelu池化层卷积操作中 pool层是比较重要的,是提取重要信息的操作,可以去掉不重要的信息,减少计算开销。nn.MAXPool2d:功能是对二维信号进行最大池化kernel_size(i
原创
发布博客 2022.01.20 ·
1910 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

三维人脸重建

文章目录1. 什么是三维人脸重建2 obj讲解3. ply讲解1. 什么是三维人脸重建三维人脸重建就是从一张或多张2D图像中重建出人脸的3D模型,如果是物体重建就是物体的图片当作输入输出物体的模型。如图所示,我们将input图片当作输入,通过网络输出三维模型,这个三维模型可以是一个以obj,ply后缀名的文件名。下图所示:2 obj讲解我们将obj文件通过 meshlab 软件打开,打开后就可以看到我们需要的重建模型。我们将result.obj用记事本打开可以看到。那么接下来我们看看
原创
发布博客 2022.01.19 ·
3692 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

HOG特征

文章目录HOG特征1. 图像预处理1.1 图像灰度化,gamma矫正2. 计算梯度图HOG特征HOG特征( Histogram of Oriented Gradients 方向梯度直方图)是一种在图像上找到特征描述子,主要通过计算和统计图像局部区域的梯度方向直方图来构成特征。来源于cvpr 2015 年论文。算法流程1 进行图像预处理2 计算梯度1. 图像预处理1.1 图像灰度化,gamma矫正我们先读入彩色图像,然后转换成灰度图像,采用gamma校正对输入的图像进行颜色空间的归一化,主要作
原创
发布博客 2022.01.18 ·
2340 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorh---stack详解

文章目录stackd = t.stack((a,), dim=0)d = t.stack((a,), dim=1)d = t.stack((a,), dim=2)d = t.stack((a,b), dim=0)d = t.stack((a,b), dim=1)d = t.stack((a,b), dim=2)d = t.stack((a,b,c), dim=0)d = t.stack((a,b,c), dim=1)![在这里插入图片描述](https://img-blog.csdnimg.cn/20210
原创
发布博客 2021.04.20 ·
157 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

数据结构与算法--二叉树

文章目录数据结构与算法什么是树,二叉树树的基本概念有序树,无序树,森林二叉树基础二叉树的性质数据结构与算法树基础:既能向数组那样查找数据,又能像链表那样快速的插入数据,树满足要求。什么是树,二叉树树的基本概念节点、父子关系:节点:图中的圆点就是树的元素,我们把它叫做节点。父子关系:用来连接节点之间关系,叫做“父子关系”。树的根节点、父节点、子节点、叶子节点、兄弟节点:结点,树,树的高度,深度,层,度深度:对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;**高度:**对于
原创
发布博客 2021.04.20 ·
126 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

数字图像系统

在光照的情况下,通过成像系统将大自然中的物体拍摄出来,成像系统手机自带有,这里面我们关心的是分辨率,成像系统显示的点数越多,阵列越大,越能真实的反映出当时物体的形象颜色。图形与图像的区别:存储格式不一样,图形是由指令来构成的,命令在计算机里是语句,记录的是坐标,颜色。图像没有命令,是一个大数据,里面是像素值,直观,信息量大图像的表示由颜色值这样一个矩阵表示,而颜色值对应于颜色表里面...
原创
发布博客 2020.06.13 ·
409 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

A tensor-based deep learning framework

2. Related work2.2. Tensor based approaches 最近,张量框架的优点引起了研究界的关注。文献19,介绍一个有监督的张量学习的框架,后者扩展了基于向量的方法去操作张量数据。这个框架被认为是张量凸优化学习的一个扩展,依赖于交替投影过程。通过整合这个框架,作者得到了支持张量机,张量极大极小概率机,张量判别分析和多 距离度量学习等几个基于 张量学...
原创
发布博客 2020.06.13 ·
402 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习中常用的5种回归损失函数

损失函数大致可分为两类:分类问题的损失函数和回归问题的损失函数。1 均方误差均方误差(MSE)是最常用的回归损失函数,计算方法是求预测值与真实值之间距离的平方和,公式如图。 2平均绝对误差(MAE)是另一种用于回归模型的损失函数。MAE是目标值和预测值之差的绝对值之和。其只衡量了预测值误差的平均模长,而不考虑方向,取值范围也是从0到正无穷(如果考虑方向,则是残差...
原创
发布博客 2020.06.13 ·
336 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Rotate-and-Render: Unsupervised Photorealistic Face Rotation from Single-View Images

摘要: 出现的问题:尽管脸部轮换在最近几年取得了迅速的进展,但缺乏高质量的配对训练数据仍然是现有方法的一大障碍。当前的生成模型严重依赖于具有同一个人的多视图图像的数据集。因此,它们生成的结果受到数据源的规模和域的限制。 解决问题:提出了一种新的无监督框架,它可以在野外仅使用单视图图像集合成照片真实感人脸。 主要方法:在三维空间中来回旋转面,并将其重新渲染到二维平面...
原创
发布博客 2020.06.13 ·
1145 阅读 ·
0 点赞 ·
4 评论 ·
3 收藏

spherical cnns

卷积神经网络已成为二维平面图像学习问题的一种选择方法,然而,最近人们感兴趣的一些问题产生了对能够分析球面图像的模型的需求。例子包括无人机,机器人和自动驾驶的全方位视觉,分子回归问题以及全球天气和气候模型。卷积网络在球面信号平面投影中天真应用注定失败,因为这种投影引入的空间变化畸变会使平动权值共享失效。本文介绍了球形cnns的构造模块。提出了一种即具表达性又具有旋转等变异性的球面互相关的定义。...
原创
发布博客 2020.06.13 ·
586 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

人脸三维重建和 人脸表观建模

获取一个人脸的几何结构构建,材质,颜色和表观为什么 会专注做 人脸图像,为什么 重要喜欢 用移动设备采集 的 多媒体数据里面,记录自己的生活,超过百分之六十的 里面有人脸,三维人脸重建和表观建模以及三维 表情捕捉在工业界和电影界的应用,基于人脸 融合的,人体彩绘,智能自动上妆,应用在美容行业,术前和术后的重建 ,三维重建和动画驱动,在 工业界,刚开始并没有研究人脸本身的特质,而是用一种传统...
原创
发布博客 2020.06.13 ·
1193 阅读 ·
0 点赞 ·
3 评论 ·
1 收藏

ArcFace:用于深度人脸识别的添加角边距损失

摘要使用深度神经网络进行大姿态人脸识别的特征学习面临的主要挑战之一是设计合适的损失函数,提高识别能力。中心损失惩罚欧式空间的深层特征与其对应类中心之间的距离,为了提高类之间的紧密度。SphereFace假设在最后的全连接层用线性变换矩阵可以作为类中心在角空间的表示,并以乘法的方式在深度特征和他们相关权重之间的角度。最近,一种流行的研究方法是在已有的损失函数加入边距,可以最大限度的提高面类可分性...
原创
发布博客 2020.06.13 ·
772 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Spherical CNNs

翻译
发布博客 2019.09.21 ·
280 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

opencv2 图片

1 图片的压缩import cv2img=cv2.imread('2.jpg',1)i=img.shapeprint(i)height=i[0]width=i[1]mode=i[2]datah=int(height*0.5)dataw=int(width*0.5)#双线性插值 dat=cv2.resize(img,(dataw,datah))cv2.imshow('im...
原创
发布博客 2018.12.14 ·
144 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Anconda 学习

1 安装 1安装Anconda  2创建虚拟环境名称3安装包     tensorflow    opencv    ……4运行notebook2 命令行conda info -e //查看当前系统下的环境conda create -n env_name python=2.7//指定python版本为2.7,注意至少需要指定python版本或者要安装的包...
原创
发布博客 2018.11.23 ·
296 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Anconda 学习

1 安装 1安装Anconda  2创建虚拟环境名称3安装包     tensorflow    opencv    ……4运行notebook2 命令行conda info -e //查看当前系统下的环境conda create -n env_name python=2.7//指定python版本为2.7,注意至少需要指定python版本或者要安装的包...
原创
发布博客 2018.11.23 ·
296 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

jsp

&lt;%@ page language="java" import="java.util.*" pageEncoding="ISO-8859-1"%&gt;&lt;%String path = request.getContextPath();String basePath = request.getScheme()+"://"+request.getServerName()+":&q
原创
发布博客 2018.11.21 ·
212 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

sevlet ---tomcat 登录

1  学习资料链接: https://pan.baidu.com/s/1zCr9nXNieGKojud2rGkkxg 提取码: f694  2  过程 3 代码servlet:package com.bjsxt.servlet;import java.io.IOException;import javax.servlet.ServletExceptio...
原创
发布博客 2018.11.16 ·
193 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏
加载更多