1、数仓分层的作用
1、把复杂问题简单化
2、减少重复开发(空间换时间)
3、隔离原始数据
2、每层的作用
ODS(Operation Data Store):原始数据层,存放原始数据,直接加载数据,不做任何处理
DWD(Data WareHouse Detail):对ODS层的数据进行清洗(去脏,去噪),维度建模,脱敏
DWS(Data WareHouse Service):以DWD为基础,按天进行汇总
DWT(Data WareHouse Topic):以DWS为基础,按主题进行汇总
ADS(Application Data Store):为各种报表提供数据支持
3、hive和mysql的区别
Hive 和数据库除了拥有类似的查询语言,再无类似之处。
1、数据存储位置
Hive 存储在 HDFS 。数据库将数据保存在块设备或者本地文件系统中。
2、数据更新
Hive中不建议对数据的改写。而数据库中的数据通常是需要经常进行修改的,
3、执行延迟
Hive 执行延迟较高。数据库的执行延迟较低。当然,这个是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
4、数据规模
Hive支持很大规模的数据计算;数据库可以支持的数据规模较小。

被折叠的 条评论
为什么被折叠?



