线性代数之线性方程组

本文详细阐述了线性方程组的解法,包括齐次线性方程组的解向量、基础解系、非齐次线性方程组的克拉默法则和解的结构,以及含参数方程组的求解技巧。同时讨论了两个方程组的公共解与同解问题,涉及抽象型方程组的解的判定和结构。
摘要由CSDN通过智能技术生成

文章目录


一、具体型方程组

 1. 解线性方程组

    1.1 齐次线性方程组

         1.1.1 解向量及其性质

        (1)\xi _{1},\xi _{2}Ax=0的解,则\xi _{1}+\xi _{2}也是它的解。

        (2)\xiAx=0的解,则k\xi(k\in R)也是它的解。

【解释】:由(1)有A\xi _{1}=0,A\xi _{2}=0,相加可得:A(\xi _{1}+\xi _{2})=0;对于(2)也同理。

 

         1.1.2基础解系

        (1)是解;

        (2)线性无关;

        (3)s=n-r(A);【s为方程组解的个数,n为矩阵A的阶数】

        1.1.3齐次线性方程组有非零解的充要条件及通解

        (1)充要条件:r(A)<n; 

        (2)通解:x=k_{1}\xi _{1}+k_{2}\xi _{2}+...+k_{n-r}\xi _{n-r}【其中k_{1},k_{2},...,k_{n-r}为任意常数】

 

 1.2 非齐次线性方程组 

          1.2.1克拉默法则

                即当|A|\neq 0时,Ax=b有唯一解。

解释如下:

若线性方程组:

其系数矩阵为:

,则该方程组有唯一解

x_{1}=\frac{D_{1}}{D},x_{2}=\frac{D_{2}}{D},...,x_{j}=\frac{D_{j}}{D},...,x_{n}=\frac{D_{n}}{D}其中D_{j}(j=1,2,...,n)是D中第j列元素换成b_{1},b_{2},...,b_{n}所构成的行列式,即(j=1,2,...,n)

【特别的】:b_{i}=0(i=1,2,...,n)时,如果D\neq 0,则方程组只有零解x_{i}=0(i=1,2,...,n)

反之,当b_{i}=0(i=1,2,...,n)时,如果方程组有非零解,则D=0.

        1.2.2几个相关说法的等价性

        (1)Ax=b有解;

        (2)向量b能由向量组\alpha _{1},\alpha _{2},...,\alpha _{n}线性表示;

        (3)向量组\alpha _{1},\alpha _{2},...,\alpha _{n}\alpha _{1},\alpha _{2},...,\alpha _{n},b等价;

        (4)Ax=b的系数矩阵与增广矩阵的秩相等;

        1.2.3非齐次线性方程组有解的充要条件:r(A)=r([A,b])

        1.2.3非齐次线性方程组解的结构(齐次方程组的通解+非齐次方程组的一个特解)

        (1)非齐次线性方程组解的形式:x=\eta ^{*}+k_{1}\xi _{1}+k_{2}\xi _{2}+...+k_{n-r}\xi _{n-r}

        (2)性质:\eta _{1},\eta _{2}Ax=b的解,则\eta _{1}-\eta _{2}Ax=0的解。

2. 解含参数的线性方程组

        方法一:将系数矩阵(齐次方程组)或增广矩阵(非齐次方程组)先用初等行变换为阶梯型,在用方程组理论判别,求解。

        方法二:"方形"(方程个数=未知数个数)的方程组

                (1):|A|\neq 0\Leftrightarrow方程组有唯一解\Leftrightarrow\lambda不是f(\lambda )的零点;

                (2):|A|=0\Leftrightarrow\lambdaf(\lambda )的零点;

3. 关于两个方程组的公共解与同解的问题

        3.1 求两个方程组的公共解

            方法一:联立求解\left.\left[\begin{matrix}A\\B\end{matrix}\right.\right]x=0;

            方法二:求出A_{m\times n}x=0的通解k_{1}\xi _{1}+k_{2}\xi _{2}+...+k_{s}\xi _{s},带入B_{m\times n}x=0求出k_{i}之间的关系,带回A_{m\times n}x=0的通解;

            方法三:给出A_{m\times n}x=0的基础解系\xi _{1}+\xi _{2}+...+\xi _{s},与B_{m\times n}x=0的基础解系\eta _{1}+\eta _{2}+...+\eta _{s},则公共解:\gamma =k_{1}\xi _{1}+k_{2}\xi _{2}+...+k_{s}\xi _{s}=l_{1}\eta _{1}+l_{2}\eta _{2}+...+l_{t}\eta _{t}

        3.2同解方程组 

                Ax=0,Bx=0是同解方程组的充要条件是:

        (1)Ax=0的解满足Bx=0,且Bx=0的解满足Ax=0

        (2)r(A)=r(B),且Ax=0的解满足Bx=0

        (3)r(A)=r(B)=r(\left.\left[\begin{matrix}A\\B\end{matrix}\right.\right])

 

二、抽象型方程组

1.解的判定

        (1):Ax=0总有解,至少有零解;

        (2):A_{m\times n}x=0

                        当r(A)=n时,只有零解;

                        当r(A)< n时,有无穷多解;

        (3):A_{m\times n}x=b

                        当r(A)\neq r([A,b])时,无解;

                        当r(A)=r([A,b])=n时,有唯一解;

                        当r(A)= r([A,b])=r< n时,有无穷多解;

【注】常考如下这些结论:

(1)若Ax=0只有零解,则r(A)=n(列满秩)推不出r([A,b])=n,故Ax=b可能有解,可能无解;

(2)若Ax=0有无穷多解(有非零解),则r(A)<n(列不满秩)推不出r(A)=r([A,b]),故Ax=b可能有解,可能无解;

(3)若Ax=b有唯一解,则r(A)=r([A,b])=A的列数,故Ax=0只有零解;

(4)若Ax=b有无穷多解,则r(A)=r([A,b])<A的列数,故Ax=0有非零解;

由(1)(2)可知,(3)(4)不可倒推

 

2.解的结构(见上“具体型齐次与非齐次方程组的解”)


总结

此篇大致讲述了矩阵方程组的相关知识,若熟练掌握还需结合具体题目进行练习。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值