FastMoE 系统 易用且高效的基于 PyTorch 的 MoE 模型训练系统 Megatron-LM

FastMoE是一个易用、高效的PyTorch MoE模型训练系统,支持数据并行和专家并行。该系统允许用户轻松地将Transformer模型转换为MoE模型,并提供分布式训练能力。FastMoE需要启用CUDA的PyTorch和NCCL库,可以通过简单的安装步骤部署。使用FastMoE,可以实现更大规模的模型并行训练,提高训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FastMoE 系统

简介

FastMoE 是一个易用且高效的基于 PyTorch 的 MoE 模型训练系统.

安装

源代码

依赖

启用了 CUDA 的 PyTorch 是必要的. 当前版本的 FastMoE 在 PyTorch v1.10.0 和 CUDA
11 的平台上经过了测试. 本系统从设计上也支持更旧或更新的 PyTorch 版本.

已知最老的支持的版本是 PyTorch 1.7.0 和 CUDA 10,
但已知某些老版本可能需要修改 FastMoE 的代码以实现支持.

如果需要使能 FastMoE 模型并行特性, 那么支持点对点通信的 NCCL 库 (即不旧于
2.7.5 版本) 也是必需的.

安装

FastMoE 包含一些定制的 PyTorch 算子, 包含一些 C 的组件. 用 python setup.py install
来简单地安装 FastMoE.

FastMoE 分布式模型并行特性默认是被启用的. 如果它需要被禁用,
则需要在运行上述命令时加入环境变量 USE_NCCL=0.

注意, 由于 PyTorch 框架通常仅集成了 NCCL 的运行时组件, 额外的 NCCL
开发包需要被安装在编译环境中, 而且它的版本需要与 PyTorch 的版本相对应. 推荐使用
PyTorch 官方 Docker 镜像,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EwenWanW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值